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Abstract

We study how teacher “value added” should inform optimal teacher-assignment
policy. Our welfare-theoretic framework illustrates (1) how theoretically optimal as-
signments leverage variation in teachers’ impacts both across student types and across
different outcomes, and (2) how empirically optimal assignments trade off improved
targeting from estimating richer student heterogeneity against increasing misalloca-
tion risk. In practice, optimal assignments use limited student types (only lagged
achievement) and multiple outcomes (not just math). Even after correcting for policy
overfitting, assignments raise average present-value earnings by $2,800 and increase
lower-achieving students’ earnings by 70–156% more than benchmark policies using
homogeneous effects, single-subject heterogeneity, or teacher deselection.
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1. Introduction

Each year school districts assign teachers to classes, distributing scarce instructional skill

among hundreds of millions of students. Research on teacher effects, especially “value-

added” measures, reveals that teacher assignments shape students’ lives for decades (e.g.,

Chetty et al., 2014b), motivating a broader policy question: How should teacher effects be

used to make socially optimal assignments? Our paper studies this public-service allocation

problem and quantifies the gains from optimal policy.

We begin by proposing a welfare-theoretic framework addressing two key complications

with using value added for teacher assignments. First, because teacher effects vary across

student subgroups (e.g., Delgado, 2025) and outcomes (e.g., Petek and Pope, 2023), “bet-

ter” assignments are conceptually ill-defined (Condie et al., 2014). Aggregating gains using

welfare weights and an index for lifetime utility characterizes the (full-information) first-best

assignment. Second, because value-added measures are estimated with noise, assignments

based on estimated effects risk misallocation (as in Andrews et al., 2024). Thus, the cost of

using models with richer heterogeneity to improve targeting is compounding misallocation

risk and overstating gains. We allow the social planner to address this tradeoff directly by

choosing the model of teacher effects used for assignment. By incorporating match effects,

multiple outcomes, model choice, and distributional objectives, this framework characterizes

a (feasible) “second-best” solution to the teacher-assignment problem.

This framework contextualizes research exploring policies that use match effects and

increase test scores. For example, several recent papers study the teacher labor-market

implications of teacher or administrator preferences using counterfactual school assignments

based on subgroup match effects (e.g., Bobba et al., 2024; Bates et al., 2025; Laverde et al.,

2025), and a few papers in applied econometrics use counterfactual class assignments to

benchmark the usefulness of new methods for estimating match effects (e.g., Graham et al.,

2023; Delgado, 2025; Ahn et al., 2025). These counterfactuals touch on an important public-

service provision problem that we attack directly through the lens of welfare economics.

We do so by considering multiple outcomes, model choice, and distributional objectives

in addition to match effects.1 Whether the resulting second-best frontier is meaningfully

different from other proposals is ultimately an empirical question.

We test the quantitative importance of optimal policy by estimating teacher value added

in the San Diego Unified School District (SDUSD). We construct shrinkage-adjusted value

added for 4,000 third- through fifth-grade teachers between 1998–2019 on math, reading, at-

1Graham et al. (2023) explicitly call counterfactuals focused on match effects a “first-pass” and emphasize
the need to consider model selection, outcomes beyond math scores, and distributional objectives.
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tendance, and behavior GPA, with heterogeneity by lagged-outcome quantiles, race, gender,

and their interactions. Although the resulting value-added measures are highly correlated

with standard, homogeneous value added, the average within-teacher difference in value

added across groups (i.e., comparative advantage) is still substantial: 26–44% of the stan-

dard deviation of standard value added. Our estimates are also forecast-unbiased, stable

across class composition, and pass a battery of robustness checks.

We use these estimates to trace out the second-best frontier of gains from teacher assign-

ments as follows. Given each set of estimates and welfare weights, we choose assignments that

maximize welfare-weighted expected earnings gains (or intermediate outcomes) using linear

programming (Bertsimas and Tsitsiklis, 1997). We consider two policies—one reassigning

teachers within school-grade cells and the other considering all 10690 possible within-grade

assignments in the district. We then characterize the optimal second-best frontier by com-

paring the optima attained under different estimates of value added.

These exercises produce three main results. First, even after corrections for policy overfit-

ting, optimal reassignments produce pronounced gains relative to the status quo. Standard

shrinkage methods control the distribution of teacher effects but do not automatically pre-

vent overfitting or the winner’s curse in the assignment problem. To address potential bias

from estimation error, we (1) use robust optimization (Gabrel et al., 2014) to select assign-

ments that are less sensitive to estimate uncertainty, and (2) evaluate assignments under

the joint posterior to identify the expected (rather than the predicted) gains. The resulting

gains are conservative but still large. For example, using simple, homogeneous estimates

of math value added to place better teachers in larger classes districtwide would increase

average scores by 0.061 standard deviations over third through fifth grade, or +$1,600 in

present-value earnings (after accounting for correlated effects on other outcomes). The gains

from the second-best earnings-maximizing policy are nearly double, just under +$2,800 per

student. These are 1.3× and 2.2× the gains from a benchmark 5% teacher “de-selection”

intervention based on math value added (Hanushek, 2009).

Second, using multiple outcomes expands the frontier of feasible gains and reshapes their

incidence. Our optimal second-best policies yield 1.2–4.6× larger gains than math-only

assignment policies (depending on the policy and the returns to non-cognitive outcomes).

Interestingly, the gains from considering multiple outcomes disproportionately accrue to

lower-achieving students. For example, under a math-score maximizing assignment policy,

higher-achieving students gain over +$2,800 versus +$1,700 for lower-achieving students.

The second-best policy gives lower-achieving students an additional +$1,200 (69%), with no

statistically appreciable difference for higher-achieving students. Because varying the welfare

weights traces out a frontier of optima with different incidence, a redistributive planner con-
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sidering multiple outcomes could provide over +$5,000 to lower-achieving students without

harming higher-achieving students on average.

Third, the second-best policy reveals that the optimal amount of student heterogeneity

to estimate is modest and loads on lagged outcomes. The marginal gains from additional

heterogeneity quickly diminish, while marginal misallocation risks rise. In our setting, par-

titions based on lagged outcomes tend to produce larger gains and less misallocation regret

than those using demographic characteristics (as in Delgado (2025) or Ahn et al. (2025)),2

and race-blind implementations of the second-best policy often dominate race-focused as-

signments for both minority and non-minority students. The optimal second-best policies

use above- and below-median partitions of lagged math and reading scores to maximize

earnings (or achievement quartiles to maximize math scores). The preeminence of lagged

achievement reflects the role of core pedagogical practices, such as differentiated instruction

(see Betts, 2011), that affect education production.

Given the size of the expected gains, we perform additional analyses to probe the real-

world feasibility of optimal assignments. For example, we find that smaller, targeted in-

terventions still produce large gains: reassigning 10% (25%) of teachers still attains 34%

(60%) of the second-best. Similarly, rather than holding compensation fixed and requiring

assignment incentive compatibility, we show that the implied surplus from the second-best

is large enough to compensate teachers for accepting welfare-improving reassignments. We

find that a $15,000 payment to change schools (as in Glazerman et al., 2013) has a marginal

value of public funds (MVFP; Hendren and Sprung-Keyser, 2020) of 2.0, and payments up

to $1,300 have an infinite MVPF for within-school class assignments (compare with Kane

et al., 2013). Even if optimal policies are not implementable, the potential gains from reas-

signment in our context illuminate the shadow value of relaxing constraints on reassignment

and compensation—roughly $625 million.

Our paper expands broader conversations about education policy, value added in other

contexts, and empirical public finance. Regarding education policy, our paper moves the

conversation about value added beyond accountability and toward welfare. In this sense, our

research on teacher assignment is most similar to other work using teacher- or school-value-

added as a primitive to understand other economically important education policy issues

such as school competition (Bau, 2022), teacher labor markets (Biasi et al., 2021; Bobba

et al., 2024; Bates et al., 2025; Laverde et al., 2025), and school choice (Beuermann et al.,

2023). In contrast, work on value added has mainly considered it as a tool for accountability

and firing (see Jackson et al., 2014), with recent extensions to staffing high-needs schools

(e.g., Glazerman et al., 2013; Colas and Fu, 2025). We find that our optimal assignments

2Or as in the teacher match literature (Dee, 2005; Delhommer, 2022).
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outperform these accountability and staffing uses of value added in both efficiency and equity.

Our paper informs the use of value added in settings beyond teacher assignment. Re-

searchers and policymakers directly use measures similar to value added in contexts as diverse

as education,3 healthcare,4 and governance,5 and implicitly use them in nearly every judge-

IV design.6 We provide practical and broadly applicable insights into effectively using value

added in optimal policy problems. For example, when researchers are interested in a unit’s

“welfare added,” our results highlight the first-order importance of considering multiple out-

comes. Similarly, the primacy of lagged outcomes in model choice could inform other models

of heterogeneous effects (e.g., Arnold et al., 2022; Dahlstrand, 2022; Einav et al., 2025b).

Our paper also complements work studying allocation problems from a mechanism-design

perspective while taking value-added measurement as given (e.g., Baron et al., 2024).

Finally, we provide an empirical example of addressing uncertainty and model choice

in empirical welfare analyses in two ways. First, by proposing a welfare framework that

endogenizes model choice, we allow the social planner to pursue targeting benefits without

ignoring misallocation risks.7 Second, we empirically quantify the costs and benefits of

considering increasingly rich heterogeneity, showing that misallocation risk is a quantitatively

important feature of optimal policy. Growing theoretical literatures emphasize how targeting

based on treatment effects can improve welfare (Kitagawa and Tetenov, 2018; Athey and

Wager, 2021) and how optimization with imperfect estimates can generate regret—especially

in highly non-linear settings (Mbakop and Tabord-Meehan, 2021; Andrews et al., 2024).

While the first insight motivates recent interventions targeting treatments as varied as social

safety programs (Alatas et al., 2016; Finkelstein and Notowidigdo, 2019), energy-efficiency

interventions (Ito et al., 2023; Ida et al., 2022), entrepreneurial lending (Hussam et al., 2022),

and interventions against gun violence (Bhatt et al., 2024), misallocation risk has received

less attention. In this sense, our paper is an empirical complement to these papers and

contemporaneous theoretical work like Chernozhukov et al. (2025).

This paper contains six sections. Section 2 introduces our framework for welfare and

value-added. Section 3 presents our data, background, and estimation procedure. Section 4

illustrates our optimal assignments, focusing only on math scores to build intuition. Section 5

3In addition to teachers, consider evaluations of principals (e.g., Branch et al., 2009; Hanushek et al.,
2024), counselors (Mulhern, 2023) and schools (Angrist et al., 2023).

4Consider papers about doctors (Chan et al., 2022; Dahlstrand, 2022), hospitals (Chandra et al., 2016;
Doyle et al., 2019; Hull, 2020), and nursing homes (Einav et al., 2025a,b)

5In addition to prosecutors (Harrington and Shaffer, 2023) and public defenders (Abrams and Yoon, 2007;
Landon, 2024) there is research on case examiners (Norris, 2019) and case workers (Baron et al., 2024).

6For a typical judge IV, the reduced form functions as a value-added measure (e.g., Kling, 2006; Aizer
and Doyle Jr, 2015; Dobbie et al., 2018; Bhuller et al., 2020).

7Cutting-edge work on value added model choice focuses on in-sample diagnostics of match effects (Ahn
et al., 2025), which we extend to the implications of model choice for optimal policy or targeting.
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extends the analysis to consider multiple outcomes, welfare, and policy. Section 6 concludes.

2. Optimal Teacher Assignment Policy

This section considers the optimal assignment of teachers to classes using value-added mea-

sures. We (1) highlight the core trade-offs characterizing the first- and second-best poli-

cies; (2) describe the limitations of traditional value-added measures; and (3) discuss when

estimating heterogeneous, multidimensional measures of teacher value added can improve

assignment policy. Although the exposition focuses on teacher value added, the theoretical

insights could apply to any setting in which a social planner chooses between policies that

have heterogeneous impacts.

2.1 Welfare Framework

Consider a policymaker selecting a policy J from a set of potential policies J . In our appli-

cation, each policy, J : i→ j, is an assignment that maps all students to their teachers. To

focus on the teacher-assignment problem, we limit our attention to policies that hold classes

constant,8 given evidence of the important roles of tracking and peer effects in educational

settings.9

The gains from an assignment J depend on student-teacher match effects. We denote

the match effect of teacher j on student outcome yi as µyi,j. Note that these match effects are

both heterogeneous—meaning that each teacher’s effect may vary among students, i—and

multidimensional—meaning that each teacher may affect multiple outcomes, y, in different

ways. Unfortunately, as pointed out in Condie et al. (2014), these match effects only partially

order assignments. While finding a Pareto gain would be ideal, this is only possible through

a series of swaps such that µyi,j ≤ µyi,j′ for all outcomes of all students. This condition cannot

be met if each teacher has homogeneous effects on all students, and it is nearly impossible in

general given the dispersion of student needs within classes and teacher effectiveness within

the district.

We use welfare theory to order the welfare gains from different assignments. By assigning

each student an ex ante welfare weight, ωi, the social planner can use equity considerations

to integrate over any effect heterogeneity. Furthermore, by defining a “score function,”

SJi = s(Y Ji ,Xi), that maps observable outcomes Yi (such as test scores or annual earnings)

and characteristics, Xi (such as lagged scores or poverty status), into a welfare-relevant

8i.e., if two students share a teacher under assignment J , they must also share a teacher under any other
assignment J ′: J = {J : J (i) = J (i′) ⇐⇒ J ′(i) = J ′(i′)}.

9To the extent to which manipulating either tracking or peer effects could generate additional gains, our
optimal assignments will serve to give a lower bound on the social gains from a more flexible policy.
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scalar, she can do the same for multidimensionality. Combining these approaches, the welfare

of any assignment relative to the status quo can be written as follows:10

WJ ≡
∑
j

∑
i:J (i)=j

ωiµi,j (1)

where µi,j is teacher j’s effect on student i’s score relative to the status quo (SJi −S
J0
i ) and ωi

is student i’s welfare weight. While the social planner may seek to maximize average scores

(ωi = 1 ∀i), revealed preference suggests that policymakers care particularly about gains to

certain students. For example, the U.S. No Child Left Behind Act focused on low-achieving

students by penalizing schools with subgroups that were not meeting standards.

Note four restrictions implied by Equation 1. First, welfare gains are linear in score

gains, consistent with relatively modest (“local”) changes in each student’s scores.11 Second,

student gains fully capture family preferences for assignments—one way to think of this

restriction is as an incentive-compatibility constraint (families will not re-sort to new schools

or classes after teachers are reassigned).12 Third, the welfare function does not directly

consider the costs of reassignment policies for teachers. This restriction can also be framed in

terms of incentive compatibility: teachers must be compensated sufficiently to switch classes

willingly. In Section 5, we consider the welfare effects of various policies that could ensure

teacher incentive compatibility. Finally, our welfare formulation implicitly assumes away

other considerations, such as school district sorting, union concerns, and the administrative

costs of implementing teacher reassignments in practice. Although these considerations

clearly matter in the real world, if the gains from optimal assignments are large enough,

they could support interventions that alleviate these concerns.

While this formulation of welfare may preclude some cases of interest, we impose these

restrictions to focus our attention on the core public-service provision problem: how to

optimally assign teachers to classes. As such, readers who are critical of these assumptions

could instead consider all welfare gains in partial-equilibrium terms. In any case, the strength

of these restrictions depends on the nature of the optimal assignments and how different they

10Appendix B.1 derives Equation 1 from a social welfare function based on ex ante weighted lifetime
utilities, W =

∑n
i=1 φiU

J
i under the assumptions that SJ is an unbiased linear predictor of utility and that

there are no cross-student spillovers. In this light, the score function could be thought of as a surrogate
index for expected lifetime utility or earnings (see Athey et al., 2025).

11Relaxing this restriction to arbitrarily large changes is trivial if one is willing to specify (continuous)
parameterizations of utility and welfare weights over the score.

12Formally, this relates to the “no spillovers” condition assumed in Appendix B.1. This implication seems
plausible because the vast majority of families do not request specific teachers in the status quo, and even
then, not all requests are honored (Jacob and Lefgren, 2007). Additionally, families do not respond to
information about value added in school choice (Abdulkadiroğlu et al., 2020) or housing markets (Imberman
and Lovenheim, 2016).
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are in practice from the status quo.

2.2 The First-Best Teacher Assignment Policy

The first-best assignment of teachers to classes is the one that produces the highest (welfare-

weighted) scores. To build intuition about this assignment policy, consider two examples:

• First, let each teacher j’s effect be homogeneous: µi,j = µ̄j. After ranking teach-

ers based on their absolute advantage, the first-best assignment would place the best

teachers in the classes with the largest (welfare-weighted) number of students. This

assignment rule generalizes the policy proposed in Bates et al. (2025).

• Second, let all class sizes be equal and let each teacher j have differentiated effects

across two student subgroups (denoted by k): µi,j = µ̄k,j for all i in group k. After

ranking teachers by their comparative advantage at teaching group k, the first-best

assignment would place the most specialized teachers in the classes with the largest

(welfare-weighted) share of group k students. This assignment rule generalizes the

policies proposed in Delgado (2025) and Ahn et al. (2025) for the two-subgroup case.

In general, however, both match effects and class sizes may vary. The first-best assignment,

therefore, must trade off marginal gains from placing better (higher absolute-advantage)

teachers in larger classes against marginal gains from putting more specialized (higher

comparative-advantage) teachers in well-matched classes.

Unfortunately, this full-information first-best policy is only feasible if the social planner

knows every possible match effect, µi,j. In practice, the social planner must rely on the

econometrician to estimate match effects. The following subsections outline the welfare

implications of this practicality and expand the social planner’s problem to endogenize model

choice.

2.3 Assignments Using Standard Teacher Value-Added Estimates

We first consider how using standard (homogeneous) value added estimates to make assign-

ments affects the social planner’s problem. While this constant-effects model of teacher effec-

tiveness is over-simplified, other empirical analyses often approximate welfare with average

treatment effects and average welfare weights (see the argument in Hendren and Sprung-

Keyser, 2020). A standard value added estimate, µ̂j, is typically constructed as the (leave-

year-out, jackknife-predicted) mean residual of test-score gains for students taught by teacher
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j. Using these estimates, a policymaker could approximate expected welfare from an assign-

ment as follows:

ŴJV A =
∑
j

njω̄jµ̂j

where nj is the number of students in teacher j’s assigned class under policy J , and ω̄j is

the average welfare weight of the students in that class.

Equation 2 shows how this approximation of welfare is systematically biased.

WJ − ŴJV A =
∑
j

nj

ω̄j (µ̃Jj − µ̄j)︸ ︷︷ ︸
Matching Gains

+ Ĉovj(ωi, µi,j)︸ ︷︷ ︸
Distributional Gains

+ ω̄j(µ̄j − µ̃0
j)︸ ︷︷ ︸

External Validity

+ ω̄j(µ̃
0
j − µ̂j)︸ ︷︷ ︸

Estimation Error

 (2)

where µ̃Jj represents the average match effects of teacher j on students in their assigned

class, and µ̄j is the teacher’s average match effect in the population (or absolute advantage).

Ĉovj(·) reports the estimated within-class covariance of welfare weights and match effects

in teacher j’s assigned class. Finally, µ̃0
j is the average match effect in the class teacher j

taught in the estimation sample (see the full derivation in Appendix B.2).

There are four key differences between the true welfare resulting from an assignment

and an approximation based on traditional value-added estimates. First, focusing on the

average treatment effect of each teacher ignores matching gains from targeting assignments

to classes with large effects (comparative advantage). Although this simplification is less

costly if teacher effects are highly correlated across students, acknowledging comparative

advantage is typically key to allocative efficiency.

Second, using averages ignores the distributional gains from targeting good matches

to students with large welfare weights. These gains are characterized by the covariance

between match effects and student welfare weights within each teacher’s assigned class. This

covariance will be ignorable if teachers truly have homogeneous effects, if the social planner

uses uniform welfare weights, or if welfare weights happen to be uncorrelated with match

effects.

Third, there is a structural difference between a teacher’s average effect, µ̄j, and the

target parameter of value added estimates, µ̃j. This inconsistency arises because traditional

value-added measures target a “treatment-on-the-treated” parameter (teacher j’s effect on

the students they actually taught, µ̃0
j) rather than an “average treatment effect” (their effect

on average, µ̄j). As such, effects estimated in one class will not be externally valid for other
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Figure 1. Optimal Assignments Trade Off Match Effects and Misallocation Risk

S1

S2

W∗

Ŵ∗V AW0

PPF: Full Info

PPF: Standard VA

Status Quo

max Ŵ : Standard max W : First-Best

(a) Example First-Best

Welfare

K: Number of Partitioning Subgroups

k∗First Bestk∗Second Best

Marginal Misallocation Risk

Marginal Welfare Gains (Oracle)

(b) Feasible Second-Best

Note: This figure illustrates the welfare gains from using value-added information to make teacher assign-

ments. Panel (a) presents a stylized depiction of the benefits of considering heterogeneity. The two axes

present the average outcome of interest, S, for two types of individuals. The graph contains two production

possibility frontiers and three iso-welfare curves. The interior production possibility frontier assigns teachers

using standard value-added measures and attains social gains of Ŵ∗V A. By considering both absolute and

comparative advantage, the dominant frontier attains the first best, W∗. Panel (b) compares the marginal

benefits and costs of considering heterogeneity over the number of subgroups-specific value-added estimates

used to make assignments.

classes whenever the distribution of match effects varies from class to class.13

Finally, whatever the target parameter of a value-added estimate, there will be estimation

error in finite samples. This introduces an important issue when comparing assignments

in search for the optimal policy. While estimation error will bias our evaluation of any

assignment rule, choosing an optimal assignment using the estimates µ̂j rather than true

average match effects will compound this error, inflating anticipated gains at the optimum.

This “winner’s-curse” type inflation occurs because some of the presumed absolute advantage

is just noise (see the analogous discussion in Andrews et al., 2024). This problem will

typically become more serious the lower the number of students per class, the higher the

variation in match effects within each class, and—if shrinking estimates—the fewer years

13While nonrandom sorting into classes will produce this problem in the limit, idiosyncratic variation from
randomization error will do the same in finite samples even under random assignment.
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each teacher is observed.14

The differences between realized and predicted welfare illustrate why assignments based

on traditional value added do not attain the first best. If teacher effects vary, the assignment

with the highest approximated welfare will likely produce gains relative to the status quo,

but it will not maximize welfare in general. To illustrate this limitation, imagine a model

where all heterogeneity in effects and weights occurs across two types of students. Panel (a)

of Figure 1 plots a production possibility frontier of gains to students of each type (relative to

the status quo). Using estimated standard value added, expected welfare increases from W0

to Ŵ∗V A, but much larger gains could be attained under the full-information first-best W∗.
Given the potential value of information about heterogeneous teacher impacts, the following

subsection explores when considering heterogeneity is optimal in practice.

2.4 Assignments Using Heterogeneous Estimates

Expanding on constant-effects models of teacher effectiveness, emerging research shows that

teachers do in fact have heterogeneous effects. For example, teacher value added varies across

student subgroups by race (Delgado, 2025), poverty (Bates et al., 2025), achievement (Biasi

et al., 2021), or all three (Ahn et al., 2025), as do other measures of teacher effectiveness (e.g.,

Aucejo et al., 2022; Graham et al., 2023). In this light, consider estimating subgroup-specific

value added, µ̂k,j, pertaining to type-k students (given some partition K) to approximate

welfare:

ŴJCA =
∑
j

∑
k∈K

nk,jω̄k,jµ̂k,j

where nk,j represents the number of type-k students in teacher j’s class and ω̄k,j their average

welfare weight.15 We consider the usefulness of this approximation in light of the four welfare

components of Equation 2.

First, using richer subgroup-specific value-added estimates will improve targeting by in-

corporating more match effects and making assignments based on comparative advantage.

In the limit, the bias in the first term goes to zero as subgroups capture additional welfare-

relevant information, but these gains cannot attain the first-best until they fully characterize

match effects.

Second, using subgroup-specific effects will tend to improve distributional gains related

14By pulling estimates toward one another, shrinkage tempers the winner’s curse relative to using unbiased
estimates (e.g., see Bobba et al., 2024), but may reduce the scope for matching gains.

15The presence of counts, n in the welfare approximation reveals the importance of absolute advantage even
when making assignments using match effects—requiring adaptations from assignment rules that abstract
from student counts (e.g., Bobba et al., 2024) or absolute advantage (e.g., Ahn et al., 2025).
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to the covariance between match effects and welfare weights. In the limit, subgroups devolve

into cells with zero covariance. In practice, however, the covariance may increase or decrease

as additional dimensions are added. Because reducing within-subgroup variability in match

effects or weights reduces bias, some partitions are more useful than others. For example,

effects and weights are much more likely to vary between students with more versus less

academic preparation than between students with earlier versus later birthdays in a given

month. Using high-variance partitions will reduce the bias in this term.

Third, using richer value-added estimates also improves external validity. The potential

for gains comes from using subgroup-specific effects to make more accurate comparisons

between classes with different compositions. Consider switching a teacher into a class with

no lower-achieving students. If the teacher is particularly good at helping lower-achieving

students but only average at helping higher-achieving students, using subgroup-specific value-

added scores would be less likely to overstate the gains from the switch, reducing bias.

Although finer partitions are more likely to create empty cells from which no information can

be extracted, Empirical Bayes shrinkage can predict effects from the available information.16

Finally, in contrast to the targeting gains on other fronts, using subgroup-specific effects

will typically increase the bias term from estimation error—even when using shrinkage.

Although estimation error will tend to increase with more subgroup-specific heterogeneity (as

discussed in Ahn et al., 2025, in relation to overfitting match effects),17 the most threatening

mechanism for bias is not estimation error in evaluating any one assignment, but overfitting

that estimation error when selecting the optimal assignment. Because the teacher-assignment

problem is highly nonlinear, the risk of overfitting small amounts of noise in the estimates

can compound with additional imprecisely estimated parameters. As such, the ex post regret

(WJ − ŴJ ) due to estimation error may be much larger in assignments made using more

complicated models of match effects. Thus, model selection based on predictive fit (e.g.,

AIC, R2, log likelihood) does not guarantee socially optimal assignments because fit and

misallocation regret are distinct issues (Mbakop and Tabord-Meehan, 2021).

Because estimating additional heterogeneity has both costs and benefits, the optimal

extent of heterogeneity to model is an empirical question. Panel (b) of Figure 1 visualizes this

trade-off. It presents the marginal welfare effects from making assignments based on teacher

value added using increasingly fine partitions of students. The benefits are the gains from

16Missing cells could generate welfare losses if policymakers are uncomfortable reassigning teachers with
extrapolated effects.

17This is obvious for the unbiased estimates whose variability typically decreases in nk,j , but it is also the
case for shrunk estimates that use the population correlations of effects across groups and time periods as
hyper-parameters. The number of these correlations to estimate with the same data increases exponentially
with subgroup heterogeneity, potentially resulting in poor estimates in finer partitions.
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making assignments using the (true) subgroup effects. The costs are the misallocation risk

from overfitting increasingly rich empirical estimates. Obviously, the first-best assignment

would use the information from the limiting partition if the match effects were known.

In practice, however, the social planner should continue estimating more subgroup-specific

effects only so long as the marginal benefits from better matching outweigh the marginal costs

from increased misallocation risk. Using value-added estimates based on this last partition

is the way to achieve the feasible second-best policy.18

This step of considering the optimal amount of heterogeneity to model is a key part of

the social planner’s problem. In a district with tens of thousands of students, there are

an overwhelming number of possible partitions over which to estimate heterogeneous value

added. Because there are so many ways to estimate teacher effects, previous work on value

added often takes this model choice as given—except occasionally as a robustness exercise

(e.g., Petek and Pope, 2023; Bates et al., 2025). An important exception is Ahn et al.

(2025), where model choice is carefully considered in the estimation step before exploring

counterfactual policies. Because model overfitting and policy overfitting are conceptually

distinct phenomena, endogenizing model choice as part of the assignment problem is essential

for attaining the second-best assignment. In practice, the empirical distribution of teacher

effects will shape both optimal teacher assignments and the magnitude of gains from optimal

policy.

3. Estimating Heterogeneous Value Added for Teachers in San Diego Unified

This section sets the groundwork for estimating and characterizing teacher value added.

To that end, we describe the data from the San Diego Unified School District, present

our estimation strategy and evidence of its validity and robustness, and summarize the

descriptive patterns of comparative advantage.

3.1 Background and Administrative Data

We use administrative data on the universe of students in the San Diego Unified School

District (SDUSD). The administrative data link teachers to students each semester and

contain student demographics and academic outcomes. We identify four outcomes of inter-

est: two cognitive outcomes—standardized scores on math and reading exams19—and two

non-cognitive outcomes—standardized attendance rates and behavior GPAs computed from

18This argument is similar in spirit to the idea of Empirical Welfare Maximization (Kitagawa and Tetenov,
2018) and Penalized Welfare Maximization (Mbakop and Tabord-Meehan, 2021), but our setting requires
considering high-dimensional treatments (teachers) all with heterogeneity.

19In most years these exams are offered statewide in grades 2–5 or 3–5 (see Appendix Table C.1).
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citizenship marks on students’ report cards. We provide additional details on measurement

and outcome availability in Appendix C.1.

We study the assignment of third- through fifth-grade teachers in 1998–2019. In SDUSD,

elementary school principals assign teachers and students to classes—often with the intent

of equalizing the teaching burden across teachers (as seen elsewhere; e.g., Osborne-Lampkin

and Cohen-Vogel, 2014). We sample 3,630 unique teachers who are the main instructors

in 18,298 traditional third-, fourth-, or fifth-grade classes from 1998 through 2019.20 This

captures 80.0% of elementary enrollments in SDUSD. We link these teachers to their stu-

dents using spring-term class rosters and create two samples. Our estimation sample in-

cludes students from all years who have two consecutive years of outcomes, and our policy-

counterfactual sample includes all students from the 2003–2011 third-grade cohorts (for

whom we have second- through fifth-grade test scores). Appendix C.2 contains additional

details about sample construction and provides summary statistics.

3.2 Estimation, Identification, and Validation

The administrative data allow us to study optimal teacher assignments. Because optimal

policy considerations require estimating different value-added measures, this section outlines

our general empirical approach. To build intuition, the maintained example uses subgroups

split by above- or below-median lagged outcomes. In this approach, we let k × s denote

the number of subgroup-by-outcome effects a model must estimate. For example, standard

value added on one outcome would have k = s = 1; value added between higher- and

lower-achieving students would have k = 2 and s = 1’ and value added between higher- and

lower-achieving students on both math and reading scores would have k = s = 2.

Our estimation approach is adapted from Delgado (2025) and Bates et al. (2025)—see

Appendix C.3 for details.21 For each subgroup k, we separately model student outcome s in

year t as

Si,s,t = αJ (i,t),s,k,t + βs,kXi,t + vi,s,t (3)

where αJ (i,t),s,k,t are outcome-specific teacher-by-subgroup-by-year fixed effects (essentially

nuisance parameters at this stage for estimating β), andXi,t are student observables including

student demographics and grade-specific cubics of all four lagged outcomes or missing flags.22

20We identify classrooms as traditional if they are not special education classes, mixed-grade classes, and
are within the 2.5th to 97.5th percentile of class size (13–35 students). See details in Appendix C.1.

21We choose to follow Delgado (2025) and Bates et al. (2025) rather than Ahn et al. (2025) because the
latter requires pooling observations over years to estimate the higher-dimensional effects and drift in teacher
effects over time is a quantitatively important consideration (Chetty et al., 2014a).

22Following Petek and Pope (2023) we use outcomes in year t and lagged scores from year t−1 for cognitive
outcomes and outcomes from year t + 1 and lagged outcomes from year t − 1 for non-cognitive outcomes
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Appendix C.5 shows that results are not sensitive to alternative specifications, such as those

in Chetty et al. (2014a).

After estimating Equation 3, we compute average residuals by teacher, outcome, sub-

group, and year in three steps. First, we subtract the estimated effects of observed student

characteristics, β̂s,kXi,t from the outcome Si,s,t. Second, we project these intermediate resid-

uals onto teacher fixed effects αJ (i,t),s, a teacher-experience profile fs(zJ (i,t),t), school fixed

effects φ`(i,t),s, and year fixed effects (for normalization). Third, we use (β̂, φ̂, ˆf()) to obtain

average residuals by teacher, outcome, subgroup, and year:

Āj,s,k,t =
1

nj,k,t

∑
i:J (i,t)=j,ki=k

[
Si,s,t − β̂s,kXi,t − φ̂`(i,t),s − f̂s(zJ (i,t),t)

]
We compute shrinkage-adjusted estimates for each teacher’s value added using their av-

erage residuals in prior years. After stacking the residuals from all outcomes and subgroups

from prior years into a vector, A−tj , we estimate shrinkage-adjusted value added and add

back experience.

µ̂V Aj,s,k,t = ψ̂j,s,kA
−t
j + f̂s(zj,t) (4)

where ψ̂j,s,k are reliability weights. Equation 4 shrinks each teacher’s value-added scores

toward their value added in other years, subgroups, and outcomes; toward the value added

of other teachers; and allows for drift over time.23 We then implement this procedure in

1,000 bootstrapped samples stratified by class to non-parametrically characterize the joint

distribution of value added in each model.

This approach follows Bates et al. (2025) exactly with two deviations to deal with mul-

tidimensionality. First, we shrink value-added estimates across both the subgroups and the

outcome domains considered in each model. This relaxes the implicitly maintained assump-

tion in Chetty et al. (2014a) and Bates et al. (2025) that there is no covariance between the

idiosyncratic components of teacher value added across outcomes. For example, in a model

of math value added with two achievement subgroups, we would use residuals from both

subgroups to predict the math value added for each subgroup (just as in Bates et al. (2025));

however, unlike other papers, in a model of both math and reading, we would use residuals

from (all subgroups of) both math and reading to predict the math and reading value added

of each teacher on each subgroup. Second, because we consider much higher-dimensional

models than Bates et al. (2025), we add a Ridge-type regularization to keep the reliability

weights, ψ, well-behaved in high-dimensional cases. Appendix C.4 formalizes this process

(thus preventing grading stringency from entering value added).
23As in Bates et al. (2025) we set a drift limit of 7 years.
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and shows that measured welfare gains are not sensitive to this decision.24

Interpreting our estimates as causal effects requires that individual- and class-type-level

shocks are conditionally independent of teacher assignment. Students and teachers are cer-

tainly not randomly assigned, but rich information about lagged outcomes seems to capture

the key unobserved determinants of outcomes (as confirmed in Chetty et al. (2014a)). This

is why we flexibly control for grade-specific cubics in all four lagged outcomes and include

school fixed effects. Note that with school fixed effects in our model, value added is identified

for all teachers through a dense network of quasi-experimental changes in subgroup-specific

test scores when teachers switch schools.25

Additional analyses support the plausibility of conditional independence and the validity

of our estimates. First, for each outcome and student type, we document precise forecast

unbiasedness. Following Chetty et al. (2014a), we regress student residuals on the value

added predicted from previous years and show that the coefficient is close to 1. Appendix

Figure A.1 plots class residuals over ventiles of subgroup-weighted value-added estimates.

All outcomes have slopes very close to 1 with tight standard errors (cluster-corrected at the

teacher level). Appendix Figure A.2 depicts the full distribution of forecast coefficients across

all models. The coefficients range from 0.98 to 1.19, with an average of 1.004—comparable

to Chetty et al. (2014a) and Aucejo et al. (2022) and slightly closer to one than both Bates

et al. (2025) and Delgado (2025).

Because optimal policy considerations require evaluating counterfactual assignment poli-

cies, we also examine teacher switches to further explore our estimates’ external validity.

Although our forecast unbiasedness already suggests external validity, Appendix Figure A.3

also depicts within-teacher changes in value added based on class size and composition. On

the one hand, if consistently teaching larger classes or lower-achieving classes is more chal-

lenging, reallocating high value-added teachers to these classes would causally reduce their

value added, leading us to overstate the gains from reassignment. This pattern would suggest

a strong negative relationship between absolute advantage and class size and class composi-

tion; however, Panels (a) and (b) show no evidence of this. On the other hand, if consistently

teaching classes with more concentrated composition enables teachers to specialize more ef-

fectively, we would understate the gains from reassignments. This pattern would suggest a

strong positive relationship between comparative advantage and composition; however, Pan-

els (c) and (d) show extremely precise null relationships for composition and small slopes

24Regularization does not impact welfare because second-best optima use relatively sparse models of
heterogeneity and regularization only changes the estimates meaningfully in relatively higher-dimensional
models that have larger misallocation risk.

25Appendix C.5 replaces teacher-by-year and school fixed effects with teacher effects and cubics of class
and school averages of all lagged outcomes, class means of demographics, class size, and grade indicators.
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for class size. Together, these relationships suggest that our estimates reflect fundamental

teacher characteristics with strong external validity in counterfactual assignments.26 If any-

thing, our estimates likely underestimate the potential gains from reassignment if teachers

can adapt or specialize.

3.3 Heterogeneity Highlights the Importance of Comparative Advantage

Using the procedure outlined above, we estimate the heterogeneous value added of the 4,000

teachers in our sample. Figure 2 presents a scatter plot of value added for each outcome

(math, reading, behavior, and attendance) when students are grouped by lagged outcomes.

Each point represents one teacher-year observation where value added on students with

below-average lagged outcomes is plotted on the y-axis against value added on students with

above-average lagged outcomes on the x-axis (both measured in student standard devia-

tions). Each plot also presents the correlation coefficient between the value added for the

two subgroups, as well as a slope coefficient for the line of best fit between the two. Ap-

pendix Table A.1 reports all of the standard deviations and the full correlation matrix for

these estimates.

Figure 2 depicts meaningful differences in value added within and across teachers. Ab-

solute advantage can be seen in the dispersion of teachers along the 45-degree line. Teachers

above and to the right generate larger gains than to teachers below and to the left. Note

that value added to math is much more dispersed (0.20 student standard deviations, σ)

than value-added to reading (0.13σ), behavior GPA (0.17σ), and attendance (0.10σ). Com-

parative advantage can be seen in the dispersion away from the 45-degree line. Teachers

above and to the left have a comparative advantage in teaching lower-scoring students and

teachers below and to the right have a comparative advantage teaching higher-scoring stu-

dents. After shrinking across the two subgroups, correlations are high.27 This means the

average comparative advantage is modest, but it is not insignificant—Appendix Table A.1

shows that the mean absolute comparative advantage is 26–44% of the standard deviation

in absolute advantage.28 Appendix Table A.3 shows that we reject homogeneity across 1,000

26Because value-added estimates are predictions based on prior years, this exercise is most informative if
a teacher’s class size and composition are more highly correlated in recent years. To the extent that these
changes are idiosyncratic across years, using prior years to predict changes in current year value added will
not capture adaptation. Because Aucejo et al. (2022) find that teachers adapt teaching practices little across
classrooms with different levels of prior achievement, this is unlikely to be a concern in practice.

27The correlations are similar to those by socioeconomic status in North Carolina (0.9 for math in Bates
et al., 2025) and lower than those by race in Chicago (0.97 for math in Delgado, 2025). Interestingly, when
we estimate effects with additional subgroups, effects are most highly correlated for adjacent groups. For
example, math value added on top-quartile students is much more correlated with value added on third-
quartile students than with value added on first-quartile students (see Appendix Table A.2).

28This is about three times larger than the difference attributable to matches on observable student
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Figure 2. Value Added Varies Both Within and Across Teachers

(a) Math Scores (b) Reading Scores

(c) Behavior GPA (d) Attendance

Note: This figure shows our heterogeneous estimates of teacher value added on both reading scores, math

scores, behavior GPA, and attendance (each measured in student standard deviations). Each dot represents

one teacher-year estimate of value added on students with above- or below-median lagged outcomes. Each

correlation coefficient, ρ, is for the entire population of teacher-year observations. The dashed line shows

the line of best fit with the slope β reported. For reference, a gray line with slope one is plotted in the

background.

class-stratified bootstraps using a standard difference-in-means t-test for 26% of teachers for

math, 22% for reading, 31% for behavior, and 6% for attendance. Not only is there mean-

and teacher characteristics (Laverde et al., 2025) and slightly less than in a rich, saturated model with
heterogeneity by 12 student characteristics (Ahn et al., 2025). As in Bates et al. (2025), we reject the null
of perfect cross-subgroup correlation at the [p < 0.001] level.
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ingful comparative advantage, but Appendix Table A.3 shows that comparative advantage

is persistent across years: teachers who are at least a standard deviation better at teaching

one subgroup display that same comparative advantage in 63–79% of subsequent observed

years, depending on the outcome.

These patterns underpin the tensions in the teacher-assignment problem. On the one

hand, there is significant dispersion in absolute and comparative advantage, so there will be

gains to assigning teachers to classes based on class size and composition. At the same time,

however, the high cross-subgroup correlations suggest that there may be swiftly diminishing

marginal returns to considering richer and richer heterogeneity—especially given misalloca-

tion risk. We measure these returns and characterize the optimal second-best assignment

in Section 4. Furthermore, because cross-outcome correlations tend to be much lower (see

Appendix Table A.1), considering comparative advantage has the potential to generate even

larger gains when the objective function includes multidimensionality—as will be explored

in Section 5.

4. Efficiently Assigning Teachers to Classes

We now consider the assignment of teachers to classes by incorporating our value-added

estimates into our theory. This section defines the assignment problem, identifies the optimal

assignment for maximizing average math scores, and assesses equity by trading off gains to

higher- and lower-achieving students. To build intuition about the trade-offs related to

heterogeneity, this section focuses only on math scores, but we consider multidimensionality

in Section 5.

4.1 Optimization Problem and Solution

Consider a social objective
∼
W that places welfare weights ωk on K groups of students. Recall

that J : (i, t) → j is an assignment function, telling us which teachers teach each student

in each year. We consider a set of candidate assignments, J , and define the following

optimization problem (with subject subscripts suppressed):

max
J∈J

∼
W(J ;ω,µ) = max

J∈J

1

N

2013∑
t=2003

K∑
k=1

∑
(i,t): ki,t=k

ωk µ̂J (i,t),k (5)

where each ωk ∈ [0.0, 1.0] represents the welfare weight on students in a given subgroup

(such that
∑

k ωk = 1), and µ̂j,k are estimates of teacher j’s value added on type k students.

Recall that the reassignment sample is limited to students in grades 3–5 in 2003–2013 and
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that we restrict J to assignments that hold classes fixed to avoid introducing peer-effect

biases into our welfare estimates. Our main results study district-wide reassignments in

which a teacher from a given class can teach any same-grade class in the district, but we

also analyze within-school reassignments where no teachers change schools or grades.

Four implications follow from Equation 5’s formulation of welfare. First, in this static

assignment problem, the social planner takes estimates as given and tries to maximize scores.

Dynamics introduce an explore-versus-exploit trade-off in which the social planner may try to

make early assignments to maximize information gain rather than only maximizing achieve-

ment gains. This economically interesting policy is likely to be more susceptible to manip-

ulation than assignment rules based on pre-policy data. Second, this formulation assumes

assignment J is respected. This is analogous to a partial-equilibrium interpretation in which

the policy does not lead students to re-sort across classes (via requests), schools (via school

choice), or districts (via in- or out-mobility). Third, because we do not change class com-

position, gains could be larger in districts with more class-level tracking (which increases

the variance in class composition). Finally, district-wide reassignments might be practically

infeasible. For example, some assignments could be incentive incompatible given teacher

preferences for locations and schools (Boyd et al., 2005; Johnston, 2025), and others could

be in tension with state or union policies. In this case, the gains from reassignments highlight

the shadow value of relaxing such constraints—something we study directly in Section 5.2.

We solve Equation 5 by linear programming. The district-wide reassignment problem

has approximately 10690 assignments to search over each year and cannot be solved by

heuristics such as assigning the best teachers to the largest classes or highly specialized

teachers to classes with well-matched demographics (see Section 2). Instead, we characterize

and solve Equation 5 as a (mixed-integer) linear programming problem (Bertsimas and

Tsitsiklis, 1997)—see Appendix D.1 for details.

Four complications affect how we solve and analyze solutions to Equation 5 in practice.

First, some teachers may never teach some types of students. While not an issue for standard

(homogeneous) value added, this concern may become particularly pronounced in higher-

dimensional models with more finely partitioned subgroups. We solve this by imputing

Empirical Bayes predictions of unidentified effects. Appendix Table A.4 reports results

separately by whether the social planner reassigns teachers with imputed value-added scores.

Second, unlike standard linear programming problems, the teacher-assignment problem

features uncertainty in the model parameters. To address this, we use robust optimization

(see Gabrel et al., 2014, for an overview). This approach is a maximin optimizer that

chooses an assignment with the highest gains under left-tail realizations of the parameters.29

29Because the social objective is monotonically increasing in each teacher’s value added, we choose left-tail
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While we prefer the robust estimates, Appendix Table A.4 also reports results from standard

optimization.

Third, predicting gains for each solution using noisy estimates as the true data-generating

process will tend to be overly optimistic. Using shrunk estimates reduces this concern but

does not eliminate the “winner’s curse” risk given the highly nonlinear nature of the problem.

We address this issue by reporting the expected gains from each assignment, J , integrated

over the joint distribution of all teacher effects: ŴJ = Eµ

[
W(J , ω, µ)

]
.30 In principle,

naively predicted gains may or may not be overoptimistic and could align with these expected

gains; in practice, we find large differences. Appendix Figure A.4 depicts large differences

and shows how naive estimates even create an illusion of convex returns to model complexity.

Also note that this process is extremely computationally expensive as it requires estimating

1,000 bootstrapped estimates for each of our 38 models,31 finding the optimal assignments

for every welfare weight, and reevaluating each optimum with each set of bootstrapped

estimates.

Fourth, the final challenge is comparing assignments made with estimates from different

models since Equation 5 considers the optimal gains given each set of estimates. The theory

in Section 2 states that the second-best optimum is an assignment made using estimates

from a model that balances expected marginal matching gains against marginal increases

in misallocation risk. We operationalize this trade-off with four data-driven approximations

of misallocation risk. Our preferred criterion is each model’s expected mean squared error

relative to plausible gains from the first-best equilibrium, but we also consider ex post regret

and heuristics based on variability and hyper-parameter behavior (see Appendix D.3 for

details on all four approaches). The regret criterion for model-selection involves re-solving

the assignment problem for each bootstrap, introducing another layer of computational com-

plexity. In the end, given the empirical distribution of gains, all four approaches to model

selection give similar characterizations of the second best.

realizations in practice by using our 1,000 bootstraps to characterize the 5th empirical percentile of each
value-added estimate for each teacher. We then find the best assignment using those (pessimistic) estimates.

30In practice, we estimate this expectation using the bootstrapped estimates Êµ

[
W(J , ω, µ)

]
≡

1
B

∑
bW(J , ω, µ̂b). We prefer the bootstraps to integration because a Shapiro-Wilk normality test rejects

normality of the bootstrapped distributions at the 0.05 level for 55% of the teacher-year-subgroup estimates.
3114 models for math, 14 for reading, 2 for behavior, 2 for attendance, 5 for math + reading, and 1

combining math + reading + behavior + attendance.

20



4.2 Gains from (Second-Best) Optimal Assignment Policies

4.2.1 Maximizing Math Scores

We first consider the second-best problem for a social planner trying to maximize average

math scores. In Equation 5, this objective implies equal (utilitarian) welfare weights on all

students. To find the second-best assignment, the econometrician estimates multiple value-

added models and the social planner compares expected gains from making assignments

using each model to determine the optimal policy.

We consider value-added estimates including heterogeneity across up to 10 lagged achieve-

ment quantiles, reported gender (female versus male), reported race and ethnicity (Black or

Hispanic versus other race/ethnicity), and interactions. Recall that in the value-added esti-

mation step, we did not include students with missing test scores (lagged or actual), grade

repeaters, and students who were absent for over 50% of the year. We do not drop these stu-

dents from the reassignment step, however. Instead, we impute lagged achievement quantiles

using analogous quantiles from other years where available and school-level averages where

necessary (see Appendices C.2 and D.1). This imputation is important for two reasons.

First, the distribution of missing scores is not uniform across classrooms. As such, dropping

students with missing scores before solving the assignment problem disproportionately re-

duces class sizes in lower-achieving schools, artificially inflating the gains from reassigning

better teachers to larger classes and redistributing gains from lower-achieving schools to-

ward higher-achieving schools. Second, in the real world, teachers will be assigned to teach

all students—whether or not their prior achievement is known. Our approach provides a

practical way to keep those students in the assignment problem.

Figure 3 presents the expected gains from robust reassignments based on value-added

estimates from nine models with varying complexity.32 Bars depict the expected achieve-

ment gains from an optimal assignment relative to the status quo. We report the gains

as the average cumulative effect over grades 3–5 (see Appendix D.2 for details). Each 95%

confidence interval comes from 1,000 reevaluations of the robust assignments using our boot-

strapped estimates. We also use these bootstrapped estimates to test the (one-sided) null

hypothesis that the gains from each model are no larger than the gains from the next most

simple model,33 where p-values report the share of bootstraps in which the simpler model

produces larger expected gains than the richer model. All results are for the district-wide

reassignment, but Appendix Table A.4 contains analogous within-school results. Further-

more, Appendix Table A.5 shows analogous results for reassignments maximizing reading

32Appendix A.4 contains the expected gains from the higher-dimensional models not included in Figure 3.
33This corresponds to models with one fewer quantile for achievement-based partitions and models without

race and gender for demographic-based partitions.
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scores and lifetime earnings.

Figure 3. Reassignments Yield Large Gains—Especially when Using Lagged Achievement
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Note: This figure shows the effects of new teacher assignments using different estimates of teacher value added

on math scores. Each assignment uses the estimates of teacher effects to solve the problem in Equation 5

by robust optimization with the empirical distribution of teacher effects in 1,000 bootstrapped samples.

We report the expected gains to student math scores under each model over grades 3–5 from the robust

assignment by averaging gains from the joint distribution of 1,000 bootstrapped estimates, accompanied by

empirical two-sided 95% confidence intervals. The figure also reports tests of the (one-tailed) null hypotheses

that each assignment produces gains no larger than the assignment from the next most simple model. The

reassignment sample includes students in the third-grade cohorts of 2003–2011.

Three main findings emerge from Figure 3. First, there are substantial gains from using

information about both absolute and comparative advantage; in each case, reassignments at-

tain large gains. Simply using standard value added to put the best teachers into the biggest

classes would produce expected gains of 0.06 standard deviations per student, 50% larger

than a benchmark teacher “deselection” program.34 In other words, policymakers who prefer

not to fire dozens of teachers—or who cannot do so given collective bargaining agreements—

could instead improve outcomes by reassigning these teachers to classes where they do less

harm and by assigning better teachers to larger classes (ideally with commensurate com-

pensation). Using richer value-added estimates generates 8%–72% larger expected gains,

indicating that information about comparative advantage can be almost equally important.

As predicted in Section 2, there also seem to be diminishing returns to considering additional

34i.e., firing the worst 5% of teachers (Hanushek, 2009, 2011; Chetty et al., 2014b).
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dimensions of heterogeneity, suggesting that the optimal policy will likely be implemented

using a relatively simple model.

Second, estimating value added using achievement-based partitions captures the most

welfare-relevant information. Given the frequent attention paid to heterogeneous teacher

effects by gender or race (e.g., Dee, 2005; Delhommer, 2022; Delgado, 2025), the second

series of bars in Figure 3 presents the gains from making assignments on these dimensions.

Using these estimates does improve assignments by about 10–20%, but value added based

on quantiles of lagged achievement increases gains by 32–72%. Not only are the gains from

considering lagged achievement larger, but conditional on achievement, the marginal impact

of considering additional demographics is even smaller. For example, using the interaction

of gender or race and a median prior-achievement split generates about 9% improvements

over just the above- or below-median split, compared with 21% improvements from using

four achievement quartiles. These results suggest that the core information for the optimal

second-best assignment comes from using lagged test scores.

The fact that policy-relevant heterogeneity loads on lagged achievement is consistent

with empirical research on differentiated instruction and accountability. For example, be-

cause teaching higher- and lower-achieving students requires different skills (see Betts (2011),

Duflo et al. (2011), Small (2012), and Tomlinson (2017)), pre-service and in-service training

programs intentionally emphasize differentiated instruction. In our theoretical framework,

the best partitions capture the most variance in match effects; to the extent that differenti-

ated instruction increases such variance, these training programs could increase gains from

reassignment. Similarly, many education and accountability policies focus on the proficiency

of lower-achieving students—even while expressing nondiscriminatory, identical preferences

for students of different genders, races, and socioeconomic statuses. These policies can even

cause teachers to allocate effort in ways that amplify their heterogeneous effects (Neal and

Schanzenbach, 2010; Macartney et al., 2021) and also serve as a natural contributing source

of the empirical patterns we document here.

Third, and finally, Figure 3 allows us to begin to compare models to choose the sec-

ond best. The figure depicts expected gains from reassignments, but not misallocation risk.

When we consider this trade-off directly, we find three reasons to select the assignment based

on value added by achievement quartiles as the optimal second-best policy. First, assignment

based on achievement quartiles has a lower expected mean squared error than all other mod-

els. While quartiles and quintiles are similar, Appendix Figure D.1 shows that other models

have 1.1–2.9× higher expected MSE. Second, Appendix D.3 also shows that achievement

quartiles effectively balance expected gains versus ex post regret and produce much more

believable hyper-parameter estimates than other more complicated models. Finally, from a
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heuristic standpoint, using four quantiles seems reasonable given the statistical equivalence

of assignments based on all larger models and the fact that these models have confidence

intervals that are 14% larger on average (a heuristic measure of increasing misallocation

risk).

4.2.2 Restructuring Achievement Equity

Whereas the previous results all focused on maximizing average scores, revealed preference

suggests that policymakers also have distributional concerns. To operationalize this idea,

we vary the welfare weights on students with below- versus above-median prior-year math

scores, ω in Equation 5, from 0.0 (only care about above-median students) to 1.0 (only care

about below-median students).35 The changes in average subgroup scores characterize the

trade-offs between helping students in each group—as in the stylized PPF in Figure 1. This

is the frontier of second-best gains described by the theory.

We depict the expected math score gains from four sets of policies in Figure 4. Changes to

lower-achieving students’ scores on the y-axis are plotted against changes for higher-achieving

students on the x-axis. Gains above and to the right of the status quo (square marker) are

always preferred by the social planner. The largest (red) and smallest (blue) PPFs de-

pict the expected gains from district-wide assignments and within-school assignments using

value-added estimates that vary by quartiles of lagged math achievement. Black diamond

markers denote the math-score-maximizing assignments. We compare these PPFs with poli-

cies that make district-wide assignments based on absolute advantage using only standard

value added, the central (orange) PPF, or only comparative advantage, the (yellow) tri-

angle marker. For comparability, the gains from all assignments are quantified under the

second-best model based on achievement quantiles.

Consider three main insights from Figure 4. First, the PPFs illustrate the potential

for accomplishing distributional objectives. In this visualization, the curvature of the PPF

indicates the scope for a policy to improve one subgroup’s scores while not harming the other

group on average. For example, the district-wide assignments using value added by math

quartiles (red long-dashed PPF) curve outward much more than those using standard value

added (orange dashed PPF). Considering comparative advantage significantly lowers the

“price” of addressing achievement gaps because the social planner can leverage match effects

to raise achievement for both groups rather than simply putting better teachers in classes

with more lower-achieving students. In fact, a policymaker using value added by achievement

35Of course, the social planner could choose welfare weights that vary along different dimensions. We
begin with achievement because of revealed preference seen in accountability policy. Furthermore, there is
no requirement that the dimension of heterogeneity align with the dimension of welfare weights, although
they often may in practice when choosing the second-best.

24



Figure 4. Optimal Assignments Can Achieve Substantial Redistribution
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Note: This figure shows the expected test score gains from optimal (robust) assignments relative to the

status quo. Three production possibility frontiers are presented: two optimally reallocating teachers across

the district or within schools (both within grade) using heterogeneous value added by quartiles of lagged

math scores, and one using standard value added. Each PPF is constructed by solving Equation 5 with

various welfare weights on lower- and higher-scoring students, ωk ∈ [0.0, 1.0]. Diamond markers show the

solutions from placing equal weight on all students. The triangle marker shows the gains from a heuristic

policy that reassigns teachers across the district using comparative advantage on above- and below-median

students ignoring class size.

quantiles could raise lower-achieving students’ scores by 0.17 standard deviations without

harming higher-achieving students on average, compared with 0.11 standard deviations using

standard estimates.

Interestingly, although one rationale for using comparative advantage is to close achieve-

ment gaps, our results show that ignoring information about absolute advantage completely

undermines this objective in SDUSD. The triangle marker in Figure 4 shows the results from

a heuristic assignment policy that places teachers with the largest comparative advantage in

teaching lower-achieving students in classes with larger shares of lower-achieving students (as

proposed in Section 2.1 and in Delgado, 2025). While this policy does produce meaningful

average benefits, in our setting they accrue only to higher-achieving students. On the other
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hand, the second-best produces three times larger gains, and (relative to the heuristic) the

majority of gains come from lower-achieving students.36

Second, in addition to helping lower-achieving students, achievement-based assignments

could substantially reduce racial achievement gaps. For example, a race-blind district-wide

assignment with 74% weight on lower-achieving students would shrink the racial achievement

gap by 0.11 standard deviations (17%) by fifth grade without harming either underrepre-

sented minorities (Black and Hispanic students) or other students. Because racial groups are

fairly segregated across schools, however, there is little scope for reducing racial gaps using

within-school assignments.37 Interestingly, the frontier of second-best gains dominates many

race-focused assignments (as in Delgado, 2025). Appendix Figure A.6 depicts the PPFs of

race-conscious assignments, showing that for each assignment that improves both groups’

scores, there is a strictly dominant version of the race-blind second-best policy based on

achievement quartiles.38

The relevance of achievement heterogeneity to educational incidence on other dimensions

has broader implications for our understanding of teacher effects and matching. For ex-

ample, our results add nuance to prior research on “match effects” between students and

teachers sharing observable characteristics like gender or race (e.g., Dee, 2005; Delhommer,

2022; Laverde et al., 2025). While these role-model effects are certainly important, this

assortative match effect is only one component of comparative advantage in general. In

our context, differentiation along the test-score distribution explains much more than demo-

graphic match, and, as shown in Figure D.1, including demographics can double expected

MSE. More broadly, this pattern illustrates the importance of examining the key determi-

nants of outcomes when estimating match effects—as in Dahlstrand (2022) with medical risk

and Arnold et al. (2022) with criminal proclivity.

Third, Figure 4 also reveals that maximizing average scores does not have uniform inci-

dence across student groups. This relationship can be seen visually by comparing the dia-

mond markers to a 45-degree expansion path from the status quo. For example, the optimal

within-school assignment benefits lower-achieving students a good deal more than higher-

achieving students (0.03 versus under 0.01); while the optimal district-wide assignment is

36The relative performance of the heuristic and the second best will be context dependent. In our setting,
the reason the heuristic does not help lower-achieving students is because teachers with a comparative
advantage at teaching lower-achieving students tend to have slightly lower absolute advantage (see Figure 2)
and because classes with high shares of lower-achieving students tend to be smaller and so do not necessarily
have more lower-achieving students overall.

37The relative value of estimating value added by demographics will depend on contextual factors like the
distribution of achievement, demographics, and value added within and across schools.

38Unconstrained, the race-conscious policy can reduce the racial achievement gap most because it can
more effectively reduce non-minority students’ scores.
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much better for both groups, it reverses the incidence, generating relatively larger gains for

higher-achieving students (0.12 versus 0.07). The redistribution of gains from lower-achieving

students occurs because putting the best teachers in the biggest classes moves teachers out

of lower-achieving schools, which typically have somewhat smaller classes.39 This reversal

illustrates how the distribution of students across classes interacts with the distribution of

teacher effects to shape the scope and incidence of gains at the second best.

As we conclude this section, consider three notes on the interpretation of the results in

the preceding sections. First, despite the net gains from reassignment, some students will

be assigned less effective or worse-matched teachers than in the status quo.40 Appendix

Figure A.7 depicts the distribution of test-score changes under various policies, illustrating

both harms and gains. Second, while the model cannot back out welfare weights justifying

the status quo, the gains at the second best do reflect the shadow cost of relaxing current

allocative constraints. In this sense, there may be large social gains from finding ways to

implement low-cost reassignments, such as the within-school optimum or targeted exchanges.

Finally, because teachers have distinct value added on different outcomes, the assignments

that optimize math scores, reading scores, and behavioral outcomes are each distinct. While

it may make sense to focus on math for assignments based on one subject (as in Bates et al.,

2025) because the variance in teacher value added is relatively large, our theory suggests

that ignoring multidimensionality may be suboptimal. This limitation motivates our need to

aggregate gains over multidimensional outcomes and identify an assignment that maximizes

welfare, not just math scores.

5. Making Welfare-Improving Assignments

Having illustrated the gains from the second-best policy for math scores, this section con-

siders how teacher assignment might affect welfare more broadly. To that end, it considers

multidimensional value added to maximize earnings gains for students, then considers poli-

cies that could induce teachers to participate in reassignment.

5.1 Reassignments Raise Lifetime Earnings

To find an assignment that maximizes present-value lifetime earnings, we define a score

function that connects teachers’ value added on math and reading with their causal effects

39As a result, relatively more gains accrue to lower-achieving students at higher-achieving schools.
40The fact that some students will be harmed by a given assignment is also a feature of the status quo, so

we can benchmark these harms against the fact that students’ average “loss” from having a poorly matched
teacher is about 0.10 standard deviations (only about 16% of the within-school-grade difference between the
best and worst teacher).
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on earnings using the estimates of Chetty et al. (2014b):41

∆Ŝi,j = $2234 µ̂readingi,j + $953 µ̂mathi,j

where µ̂si,j are the jointly estimated and shrunk effects of teacher j on outcome s for student

i, and where gains are measured in nominal 2025 dollars. Following Chetty et al. (2014b),

the causal change in predicted present-value lifetime earnings is calculated under three as-

sumptions: (1) individuals may choose to work between the ages 20 and 65; (2) gains from

higher test scores apply to earnings at all ages; and (3) earnings gains are discounted at

3%.42 These gains are discounted back to age 10, the average age of students in our sample.

Later, we also present auxiliary results depicting earnings gains from score functions that

include returns to noncognitive gains as well, revealing that our main results tend to be

conservative.

We define the welfare maximization problem as

max
J∈J

∼
W(J ;ω,µ) = max

J∈J

1

N

2013∑
t=2003

K∑
k=1

∑
(i,t): ki,t=k

ωk ∆Ŝi,t,J (i,t) (6)

which is identical to Equation 5, but optimizes over the predicted change in score ∆Ŝi,j

as a function of our jointly shrunk value-added scores on math and reading by lagged-

achievement. We show in Appendix D.3 that the second-best assignment combines informa-

tion from above- and below-median math value added and above- and below-median reading

value added—although the expected gains from using terciles, quartiles, or quintiles are sim-

ilar. In particular, Appendix Figure D.1 shows that using above- and below-median math

value added and above- and below-median reading value added produces 1.2–1.6× lower

MSE than other models, and Appendix D.3 shows that this model most effectively balances

expected gains and ex post regret.

Note that this welfare formulation has two possible empirical limitations. Both arise

from the unique empirical and econometric context of the Chetty et al. (2014b) earnings

estimates. First, the estimates reflect the effects on students in New York between 1989–

2009, but our analyses study students in California from 2003–2011. However, given that the

data reflect overlapping years in similar large urban school districts, it seems plausible that

41The earnings effect of increasing reading scores by one student standard deviation is $189
0.124σ = $1, 524

in nominal 2010 dollars. The earnings effect of increasing math scores by one student standard deviation
is $106

0.163σ = $650 in nominal 2010 dollars. We then inflate these gains into nominal 2025 dollars (a 46.6%
increase). These earnings effects are estimated simultaneously; see Table 6 and the discussion on page 2268
in their paper.

42We assume a 5 percent discount rate partially offset by 2 percent real wage growth.
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teachers’ pedagogy and students’ opportunities are broadly similar across contexts. Second,

Chetty et al. (2014b) do not estimate subgroup-specific earnings effects for value added on

both math and reading, so our score function relies on population effects. To the extent that

earnings effects vary across subgroups, the objective in Equation 6 will produce lower gains

than a policy that assigns effective teachers to subgroups with stronger links between test

scores and earnings.

Figure 5 depicts the expected gains from reassignment. It shows expected present-value

increases in lifetime earnings from experiencing optimal assignments in grades 3–5. Gains

to students with below-median lagged math scores are on the y-axis, and gains to students

with above-median lagged math scores on the x-axis (see aggregation details in Appendix

D.2). The status quo is marked with a square, and PPFs trace out the frontier of second-

best optima under different welfare weights, with diamond markers denoting the utilitarian

assignments that produce the highest average earnings.

Figure 5 reveals substantial benefits from optimal teacher assignment. We estimate that

the second-best optimum under district-wide assignment would generate $3,000 in present-

value earnings for below-median students and $2,600 for above-median students ($2,800

on average). These large gains are 2.2 times larger than the gains attainable through a

benchmark “deselection” of 5% of teachers.

Policymakers concerned about inequality can also create large redistributive gains. For

example, in the district-wide assignment, a social planner could increase the present value of

lower-scoring students’ earnings by over $5,200 without hurting high-scoring students on av-

erage. A similar comparison reveals gains of about $1,100 from within-school assignments.43

Repeated year over year, these assignments could powerfully reduce both achievement and

earnings inequality among students coming out of the district.

Furthermore, these gains are also larger than the gains from policies ignoring multidi-

mensionality. Because math value added is more variable across teachers, math-focused

assignments seem more desirable due to the greater scope for achievement gains. This in-

tuition plays out in the policy experiments considered in Bates et al. (2025) and Delgado

(2025), which both focus only on math. By evaluating the assignments proposed in the previ-

ous sections with the ∆Ŝ estimates of earnings gains, however, our results suggest materially

larger gains from considering both math and reading due to the larger earnings impact of

reading value added. Specifically, we find that the earnings-maximizing assignment produces

2.7× larger gains (+$1,800) than the comparative advantage heuristic proposed by Delgado

(2025), 1.7× larger gains (+$1,200) than the optimal assignment using standard value added

mentioned in Bates et al. (2025), and even 1.2× larger gains (+$500) than the district-wide

43This happens to be extremely close to the average-income-maximizing within-school assignment.
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Figure 5. Combining Math and Reading Value Added Increases Earnings Gains
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Note: This figure depicts the expected present-value lifetime earnings gains from optimally assigning teachers

in grades 3–5. The PPFs are plotted by varying the welfare weights for students with above- and below-

average math scores in third grade. The outer frontier reports the gains from a district-wide assignment,

and the inner frontier from a within-school assignment. The diamond markers represent the (utilitarian)

assignments that maximize average earnings. Each assignment solves the problem in Equation 6 by robust

optimization using jointly shrunk estimates of value added on math and reading by lagged achievement in each

relevant subject. These estimates are mapped into earnings following the procedure in Chetty et al. (2014b).

The sample includes students in the third-grade cohorts of 2003–2011. The triangle markers represent gains

from heuristic assignment policies: “Math-Score Maximizing” is the optimal assignment when considering

only math scores; “Math Absolute Advantage” is a policy that makes assignments based on standard math

value added alone; and “Math Comparative Advantage” is a policy that assigns the teachers with the highest

comparative advantage (based on above- and below-median prior math score value added) to the classes with

the highest shares of below-median students.

assignment maximizing average math scores from Section 4.

Not only does the second-best assignment increase average gains, but the incidence of

considering multidimensionality loads significantly on lower-achieving students. This rela-

tionship is illustrated by the vertical distance between the triangle markers and the PPF

in Figure 5. The earnings-maximizing assignment raises lower-achieving students’ earnings

by 156% (about $1,800 more than teacher deselection), 86% (about $1,350) more than an
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optimal assignment based on standard math value added, and 70% (about $1,200) more

than the optimal assignment maximizing math scores. These large differences highlight the

distributional implications of including optimal model choice in the social planner problem.

In terms of policy, these gains hint at enormous benefits from optimally reallocating

teachers: our estimates suggest that implementing this policy with San Diego teachers in

grades 3–5 over our 1998–2019 sample period could have generated present-value gains of

roughly $625 million. Assuming comparable gains outside of the San Diego Unified School

District, implementing this policy in all U.S. public schools44 over ten years would generate

gains on the order of $100 billion.45

Consider two notes on interpreting these results. First, although these gains are large,

using both cognitive and noncognitive outcomes produces even larger gains. With no causal

estimates of the long-term earnings gains from behavioral or attendance value added, we

create alternative score functions by combining jointly shrunk value added on above- and

below-median students in all four outcomes—math, reading, behavior, and absences—with

hypothetical causal effects from $0 to $3,000. This is larger than the estimated range of

cognitive effects, reflecting evidence of the relative importance of noncognitive skills in earn-

ings gains (Chetty et al., 2011).46 Appendix Figure A.8 compares these assignments to the

earnings-maximizing assignment in Figure 5, showing up to 60% larger gains when using

noncognitive outcomes to make assignments. This suggests a second-best frontier that is

1.5–4.6 larger than other policy proposals.

Second, within-school assignments are a promising low-cost policy. In practice, the multi-

billion-dollar gains may be infeasible, but the (relatively costless) within-school reassignments

still generate nearly 20% of the gains. The remaining difference suggests a return to relaxing

institutional constraints that prevent these multibillion-dollar gains. The following subsec-

tion explores one such policy.

5.2 Funding Welfare with a Teacher Bonus Program

In this section we consider a hypothetical bonus pay program for teachers. As noted in

Laverde et al. (2025), some assignments may not be incentive compatible without increasing

compensation. The hypothetical bonuses allow us to consider welfare and incentive com-

patibility without explicitly modeling teacher preferences. We imagine a policy providing

44There are roughly 3.6 million public school students in each cohort in the United States (NCES, 2024).
45Because reassignments will tend to produce smaller gains in smaller districts and larger gains in larger

districts, these gains should be considered a rough benchmark rather than a precise calculation.
46Our alternative score functions simulate results slightly larger than the range of cognitive effects that

include estimates based on the effects of principal cognitive/noncognitive value added on employment in
Texas (Hanushek et al., 2024) and the effects of teacher cognitive/noncognitive value added on postsecondary
education outcomes in Greece (Lavy and Megalokonomou, 2024).
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teachers with additional compensation for participating in reassignment—whether or not

their school or class assignment is changed. As long as these bonuses are large enough to

ensure incentive compatibility, the welfare under the resulting assignment is reflected in the

marginal value of public funds (MVPF; Hendren and Sprung-Keyser, 2020) expended on the

bonuses. Studying these bonuses allows us to benchmark the feasibility of the second-best

optima and is a step toward implementing welfare-improving policies.

This MVPF is a “bang-for-the-buck” measure of each bonus program, calculated as

the present value of total program benefits divided by the net cost of implementing it.

Specifically, for a bonus of size b, the MVPF of assignment J is

MV PFJ (b) =

∑
i(1− t)∆Ŝi,J (i)

Njb−
∑

i t∆Ŝi,J (i)

(7)

where (1 − t)∆Si,J (i) are the after-tax present-value monetary gains to each student from

assignment J (given tax rate t), Nj is the number of teachers, and t∆Ŝi,J (i) is the present-

value of gains recouped as tax revenue. We focus on earnings gains, ∆Ŝi,J (i), from the

second-best assignment with equal weights on all students and calibrate t = 0.28 with data

from the Opportunity Atlas for San Diego (Chetty et al., 2018).47

Two key assumptions are needed to make this statistic meaningful in practice. First, the

MVPF in Equation 7 reflects the national value of the optimal assignment policy, so there

must be a way to internalize the fiscal externality of the local district’s policy (see Agrawal

et al. (2023) for more on comparing local and national MVPFs). This assumption would be

met if state and federal governments funded the teacher bonuses (or transferred the marginal

tax revenue back to the district). Otherwise, the MVPF must be interpreted as the total

value of implementing this policy nationwide. Second, this MVPF assumes that all teachers

must be paid. As such, it is a lower bound on the social gains that could be further improved

by targeting bonuses, for example by offering bigger bonuses to teachers who have to make

bigger changes or by reassigning only a subset of teachers.

Figure 6 plots the MVPF of increasingly large bonus programs. The two series represent

the MVPF of a bonus program of a given size for district-wide or within-school reassignments.

The MVPF of any bonus program can be interpreted as dollars of social benefit produced

for each dollar of net costs spent on bonuses. Values of the MVPF above 5 are reported at

the same height on the y-axis. Policies with negative net costs, or Njb <
∑

i t∆Ŝi,J (i), have

an “infinite” MVPF, as indicated in the figure.

47For children growing up in San Diego County, the median income at age 35 is $43,000. Because the
majority of these individuals are unmarried (56%) and still living in the same commuting zone (68%), we
apply the marginal tax rates from the United States and California for single filers, 0.22 and 0.06.
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Figure 6. Compensating Teachers for Reassignment Could Have Enormous Welfare Impacts
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Note: This figure shows the marginal value of public funds (MVPF) of teacher bonus programs of different

sizes for either within-school or district-wide assignments. Values are capped at 5 on the figure, the range

for which the MVPF is infinite is indicated with arrows, and the x-axis is shown on a log scale.

The main takeaway from Figure 6 is that the MVPF of reassignment bonuses is very large

for a broad range of bonus sizes. In fact, many of these bonuses would be generating (present-

value) revenue while still increasing student earnings. For the district-wide assignment, the

MVPF is infinite for bonuses of up to $6,500 per year. For context, the starting salary for

a new teacher is just under $59,500, so this would imply an 11% annual bonus. For the

within-school assignment, the MVPF is infinite for bonuses up to $1,300 per year. This

second value is particularly striking because the intervention is so noninvasive (especially

given that teachers care a great deal about commuting distances (Boyd et al., 2005; Bates

et al., 2025)), yet it generates gains large enough to justify reasonably large payments to

teachers.

Even when the MVPFs are not infinite, they can be large even for costly bonus programs

that are likely to be incentive compatible. For example, for the district-wide assignment,

a bonus program paying every teacher in the district $15,000 per year to participate in

the reallocation would still have an MVPF of 2.0. In other words, it would generate $2 of

present-value earnings gains for every dollar spent on bonuses. With respect to incentive

compatibility, in a large randomized controlled trial, a similar payment was more than enough

to induce teachers to change schools (Glazerman et al., 2013).48 For the within-school

48This experiment offered teachers $20,000 over two years in 2009 and 2010 or 2010 and 2011, equivalent
to $29,300 in 2025 dollars, or roughly $15,000 per year. For context, the average baseline salary of teachers
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reallocation, the Measures of Effective Teaching reassigned teachers within school for less

than $1,000 (Kane et al., 2013), which would have an infinite MVPF. Although there are

no survey data on teacher willingness to accept, conversations with teachers in other similar

districts suggest that many would accept $15,000 to switch schools and $1,000 to switch

classes without hesitation. The MVPF of these policies is greater than one for bonuses up

to $23,000 and $4,500 per year.

While this specific policy may never be adopted, the exercise highlights the value of similar

teacher pay policies. For example, our results suggest that policymakers may consider paying

effective teachers to teach slightly larger classes or paying specialized teachers to teach in new

schools. Although these assignments could make some teachers worse off as uncompensated

switches, the policies we explore tend to generate student earnings gains large enough to

justify substantial teacher bonuses. These results suggest that, in a long-run equilibrium,

there are many teacher pay programs that could pay for themselves, as long as districts have

the capacity to make assignments flexible and receive some of the resulting tax revenue to

cover the costs of implementation.

5.3 Welfare Comparisons with Other Policies

Having considered the optimal assignment policies motivated by our theory and quantified

the expected gains from each, we conclude by comparing the performance of our preferred

policies with three alternatives: limited reassignments, teacher deselection, and restaffing

targeted schools. We discuss our approach to analyzing each policy and compare their effec-

tiveness. Figure 7 summarizes the results, plotting the gains from selected counterfactuals

compared with the optimal second-best policies.

Limited Reassignments. Because it may be more valuable to reassign certain teachers

than others and because there may be diminishing marginal returns to additional reassign-

ments, we consider a set of policies that restrict district-wide assignment to a limited share

of teachers. We implement this counterfactual by assuming uniform welfare weights and con-

straining the linear program to change the assignments of no more than X% of teachers in

1% increments. We find that reallocating (and paying bonuses to) as few as 25% of teachers

achieves over 60% of the gains from the optimal district-wide assignment. As such, bonuses

of up to $16,000 per year for those teachers would have an infinite MVPF.

Teacher “Deselection.” A hallmark policy that uses value added is to remove or

“deselect” the least effective teachers (Hanushek, 2009). We implement this counterfactual

by identifying the lowest X% of teachers in standard math value added and replacing them

with hypothetical teachers who have mean value added on all subgroups and outcomes. As

who transferred was $46,604 in 2010.
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expected, there are sizable gains. Removing the lowest 5% (1%) of teachers would achieve

gains equal to about 45% (13%) of those attained by the second-best assignment. This policy

is extremely costly to the removed teachers, but it affects far fewer teachers. In fact, because

these teachers tend to be so ineffective, policies to ensure incentive compatibility could have

large returns. For example, if suitable replacements could be found, even a severance-pay

policy of $55,000 to each removed teacher would have an infinite MVPF in either case.49

Figure 7. Second-Best Reassignments Outperform other Proposed Policies
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Note: This figure depicts the expected present-value lifetime earnings gains attained by various policies.

It reports the gains from limited district-wide assignments (circle markers), restaffing low-resourced schools

(square markers), and “deselecting” low-performing teachers (triangle markers) alongside the PPFs from fully

optimal district-wide (dashed line) and within-school (dot-dashed line) assignments. The diamond markers

represent the (utilitarian) assignments that maximize average earnings. Gains are presented comparing

effects on students who had below-average math scores with those who had above-average math scores and

are evaluated using the full distribution of jointly estimated value added on math and reading by above- or

below-median lagged achievement in each subject.

Restaff Targeted Schools. Another increasingly popular policy approach is to offer

large bonuses to high-value-added teachers to teach in low-resourced schools. After pilot

49Of course, it is not guaranteed that such replacements can be found (Rothstein, 2015). In this case, our
counterfactuals overstate the actual gains.
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results in seven states (Glazerman et al., 2013), many districts have implemented similar

policies (e.g., see the setting of Colas and Fu (2025)). We implement this counterfactual by

identifying X% of teachers at Title I schools who have standard math value added below

the top quartile and then swapping these teachers with randomly selected teachers from

the top quartile who teach in the same grade at non-Title I schools. Consistent with the

redistributive motive, there are no average gains, but the policy does produce meaningful

gains for lower-achieving students. For example, restaffing 10% of positions increases their

present-value earnings by $600 ($1,300 for 25%), with comparable losses to higher-achieving

students relative to the status quo.

Policy Comparison. Figure 7 depicts three main patterns emerging from this policy

comparison. First, the gains from the optimal district-wide assignments dominate all al-

ternatives. Second, the low-cost within-school assignments produce comparable gains (or

comparable redistribution) to much more invasive policies such as restaffing 25% of posi-

tions at Title I schools or completely removing 1% of teachers. Finally, note the nonuniform

incidence of these policies. Unsurprisingly, restaffing Title I schools benefits only lower-

achieving students on average, but deselection actually benefits higher-achieving students

about 20% more than lower-achieving students. As a result, an equity-minded policymaker

would strongly prefer a welfare-weighted second-best policy. Taken together, these results

highlight the untapped potential for policies that allow for more flexible and informed teacher

assignment and compensation based on value added.

6. Conclusion

A recent poll found that 53% of U.S. adults had a teacher who “changed their life for the

better” (Dumitru, 2022). Given the massive potential for good that school teachers have for

their students, it is of primary importance to find ways to more effectively utilize teachers’

capacity and skills. In this paper, we outlined an approach to use value-added measures more

effectively to assign teachers to classes, using tools from public finance to create, compare,

and utilize value-added measures that are heterogeneous, multidimensional, and estimated

with noise. We then use that approach to describe optimal second-best teacher assignment

policies for the San Diego Unified School District, while taking multiple steps to reduce

misallocation errors due to noise.

The core message of our paper is that there are substantial gains from using value added

in the teacher assignment process, particularly when we model the multifaceted nature of

teacher effectiveness. We documented large expected gains to both achievement and earnings

from value added based assignments. Back-of-the-envelope calculations suggest large welfare
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gains from these policies, even if they are quite expensive to implement. We also find that

other approaches in the literature (e.g., Graham et al., 2023; Bates et al., 2025; Delgado,

2025; Ahn et al., 2025), while effectively highlighting the importance of value-added match

effects, forgo substantial welfare gains. For example, papers that do not allow for gains from

absolute advantage made possible by variation in class size (as in Delgado, 2025; Ahn et al.,

2025) forgo roughly half of welfare gains. Additionally, these papers focus on one outcome,

but considering multidimensional effects generates 20+% larger welfare gains. Likewise,

using uniform welfare weights misses out on large gains whenever the social planner has

distributional objectives.

We also explored a number of relevant considerations for practitioners studying value

added. For example, we adapt the workhorse value-added estimation procedure to accom-

modate extremely high-dimensional value added and demonstrate the quantitative impor-

tance of the “winner’s curse” in teacher assignment problems with uncertainty (Andrews

et al., 2024). We show that, while innocuous for simple models, measures of this winner’s

curse, such as volatility and ex post regret, explode as models become increasingly complex.

Finally, by using robust optimization and focusing on expected rather than predicted gains,

we find that relatively simple models of heterogeneity tend to serve the social planner best.

In a broader context, these principles likely apply beyond teacher assignment and evalu-

ation. In public policy, there are many settings where the best assignments likely depend on

match effects, such as health (e.g., Dahlstrand, 2022), immigration (Norris, 2019), and crimi-

nal justice (Landon, 2024). Applying this approach in such domains could help policymakers

improve both the efficiency of service delivery and the equity of outcomes for underserved

groups—in short, allowing them more value out of value added.
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A. Additional Tables and Figures

Figure A.1. Heterogeneous Value-added Measures Are Forecast Unbiased
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Note: This figure shows the relationship between average residuals for each teacher’s class and their predicted

value added (average estimated match effect on students in the class) based on prior years of data.
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Figure A.2. All Models all Exhibit Minimal Forecast Bias
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Note: This figure shows the forecast-unbiasedness coefficients for different models. This figure shows the

relationship between average residuals for each teacher’s class and their predicted value added (average

estimated match effect on students in the class) based on prior years of data. The four bars to the right of

1.05 are value added estimates on single non-cognitive outcomes, i.e., standard or median split behavioral

GPA value added and standard or median split attendance value added.
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Figure A.3. Teachers’ Value Added Doesn’t Change with Class Size or Composition
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(c) Comparative Adv. by Class Size
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Note: This figure shows how our heterogeneous estimates of teacher value added on reading, math, behavior,

and absences relate to class size and class composition. The top panels show teacher absolute advantage

(average value added among higher- and lower-scoring students) and the bottom panels show the comparative

advantage (difference in value added on higher- and lower-median scoring students). The panels on the left

plot the within-teacher variation over the number of students in class where β reports the within-teacher

change associated with a five-student change in class size. The panels on the right plot the within-teacher

variation over the share of lower-achieving students where β reports the within-teacher change associated

with a 10 percent change in the fraction of below-median students in the class.
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Figure A.4. Predicted Gains Are Far too Optimistic
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Note: This figure shows the predicted gains from naive assignments and the predicted and expected gains

from robust assignments. Predicted gains will be much larger than expected gains if over-optimism is a

problem. The predicted gains tend to be (far) above even the 97.5th percentile of the empirical distribution

of gains from the bootstrapped estimates. While not depicted in the figure, expected gains from the naive

assignment tend to be slightly lower than expected gains from the robust assignment in most models, though

they are not statistically distinguishable.
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Figure A.5. Status Quo Assigns Lower-Achieving Students Worse Teachers
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(a) Absolute Adv. by Class Size
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(b) Absolute Adv. by Pct Below Median
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(c) Comparative Adv. by Class Size
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(d) Comparative Adv. by Pct Below Median

Note: This figure shows how our heterogeneous estimates of teacher value-added on reading, math, behavior,

and absences relate to status quo class size and class composition. The top panels show teacher absolute

advantage (average value added among higher- and lower-scoring students) and the bottom panels show

the comparative advantage (difference in value added on higher- and lower-median scoring students). The

panels on the left plot the cross-sectional variation of absolute advantage over the number of students in class

where β reports the cross-sectional change associated with a five-student change in class size. The panels

on the right plot the cross-sectional variation over the share of lower-achieving students where β reports the

cross-sectional change associated with a 10 percent change in the fraction of below-median students in the

class.
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Figure A.6. Race-Blind and Race-Conscious Reassignments
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Note: This figure compares the gains from reassignments by student race using two racial groups: (1) Black

and Hispanic students and (2) other students. We report two sets of results from optimal reassignments: one

using value added by achievement and one using value added by race. We also report two heuristic policies:

one placing the teachers with the largest comparative advantage at teaching minority students in the classes

with the largest share of minority students, and the other placing teachers with the largest absolute advantage

(average value added across race) in the classes with the largest share of minority students.
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Figure A.7. Reassignments come with Gains to Many Students and Losses to Some Relative
to the Status Quo
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Note: This figure shows the distribution of differences in gains between the reassignment simulation and the

status quo. The first row on the x-axis shows lower-achieving students (0) and higher-achieving students

(1). The second row gives the percent of the weight placed on lower-achieving students. The “x” marks give

the mean difference for the given group, and the boxes show the 5th, 25th, 50th, 75th, and 95th percentiles.
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Figure A.8. Percent of Gains from Assignments Ignoring Non-Cognitive Skills
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Note: This figure reports the overall share of gains attained by a naive assignment ignoring non-cognitive

outcomes. The plot reports the percentage of gains attained by assignments made using only math and

reading relative to assignments using all four outcomes—evaluated using jointly shrunk value added across

all four outcomes. The x-axis reports the gains for different values of the return to a student standard

deviation increase in behavior value added, and the range plot covers the same range for attendance value

added (with the connected scatter representing $1,500). Because all gains are evaluated using estimates

jointly shrunk with all four outcomes, the (naive) assignment using only (jointly shrunk) math and reading

value added is no longer optimal. Indeed, because the estimates are different, this naive evaluation produces

slightly lower expected gains (about 19% less) than the optimal assignment using estimates jointly shrunk

with all four outcomes, even when there is no causal effect of non-cognitive scores on earnings.
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Table A.1. Full Correlations Between Above- and Below-Median Value Added

Math Math Reading Reading Behavior Behavior Absences Absences

Below Above Below Above Below Above Below Above

Math Below - 0.94 0.67 0.67 -0.00 0.00 0.01 0.02

Math Above 0.94 - 0.66 0.67 0.00 0.01 -0.05 -0.07

Reading Below 0.67 0.66 - 0.94 0.01 0.00 0.02 0.00

Reading Above 0.67 0.67 0.94 - 0.01 0.01 0.03 0.02

Behavior Below -0.00 0.00 0.01 0.01 - 0.93 0.12 0.11

Behavior Above 0.00 0.01 0.00 0.01 0.93 - 0.13 0.11

Absences Below 0.01 -0.05 0.02 0.03 0.12 0.13 - 0.85

Absences Above 0.02 -0.07 0.00 0.02 0.11 0.11 0.85 -

Standard Dev 0.18 0.20 0.13 0.12 0.16 0.14 0.09 0.10

E[|CA|]/σAA 0.30 0.26 0.31 0.44

CA Range / AA Range 0.36 0.36 0.42 0.57

Note: The standard deviations are reported in the row labeled “Standard Dev,” and each element in the

matrix is the correlation between the row and the column. “Below” and “Above” refer to students below and

above the median. The row labeled “E[|CA|]/σAA” shows the mean absolute comparative advantage divided

by the standard deviation of absolute advantage for the subject. The row labeled “CA Range / AA Range”

shows the difference between a 99th-percentile teacher and a 1st-percentile teacher in terms of comparative

advantage divided by the difference between a 99th-percentile teacher and a 1st-percentile teacher in terms

of absolute advantage.
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Table A.2. Correlations Between Quartile Estimates of Math and Gender Value Added

Math Math Math Math Male Male Female Female

1st 2nd 3rd 4th Below Above Below Above

Math 1st - 0.95 0.88 0.83 0.95 0.82 0.95 0.88

Math 2nd 0.95 - 0.90 0.85 0.93 0.81 0.96 0.89

Math 3rd 0.88 0.90 - 0.99 0.96 0.96 0.86 0.98

Math 4th 0.83 0.85 0.99 - 0.93 0.97 0.82 0.98

Male Below 0.95 0.93 0.96 0.93 - 0.94 0.92 0.97

Male Above 0.82 0.81 0.96 0.97 0.94 - 0.76 0.98

Female Below 0.95 0.96 0.86 0.82 0.92 0.76 - 0.87

Female Above 0.88 0.89 0.98 0.98 0.97 0.98 0.87 -

Standard Dev 0.17 0.22 0.20 0.20 0.17 0.20 0.20 0.20

Note: The standard deviations are reported in the last row, and each element in the matrix is the correlation

between the row and the column. “1st”, “2nd”, “3rd”, and “4th” refer to students of the respective quartiles.

“Below” and “Above” refer to students below and above the median in terms of prior math scores.

Table A.3. Estimates Show Meaningful Within-Teacher Comparative Advantage

Math Reading Behavior Absences

Frac 95% Same Sign 0.25 0.16 0.16 0.08

Frac Significantly Diff Above and Below 0.26 0.22 0.31 0.06

Frac Years w/ Same CA 0.79 0.65 0.76 0.63

Note: The first row shows the fraction of teacher-year estimates that have the same signed comparative

advantage in 95% of the 1,000 bootstrapped estimates. The second row shows the fraction of teacher-year

estimates for which we reject equality between the above- and below-median estimates using a standard

difference-in-means t-test with standard errors calculated from the bootstrap distribution. The third row

shows the fraction of years in which teachers in our data, whom we observe for at least three years, have

a comparative advantage teaching the same subgroup of students that we estimated for them in their first

year. In the third row, we also focus on teachers who should be consistently good at teaching one group

by dropping teachers who have a comparative advantage within one standard deviation of zero in their first

year.
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Table A.4. Naive and Robust Reassignment Results

Math Standard Gender Race Math Median Math Terciles Math Quartiles Math Quintiles Gender x Median Race x Median

Split Split Split

Across District:

Naive (Not Imputed) 0.061 0.065 0.070 0.080 0.083 0.089 0.091 0.084 0.073

[0.059,0.063] [0.061,0.070] [0.058,0.087] [0.070,0.093] [0.078,0.089] [0.078,0.101] [0.079,0.103] [0.073,0.095] [0.062,0.085]

Naive (All Teachers) 0.061 0.065 0.076 0.081 0.088 0.097 0.103 0.088 0.089

[0.059,0.063] [0.061,0.070] [0.063,0.095] [0.071,0.094] [0.082,0.094] [0.085,0.111] [0.090,0.118] [0.077,0.100] [0.076,0.104]

Robust (All Teachers) 0.061 0.066 0.075 0.081 0.087 0.098 0.105 0.088 0.089

[0.059,0.063] [0.062,0.071] [0.063,0.093] [0.071,0.092] [0.082,0.094] [0.085,0.114] [0.091,0.120] [0.077,0.098] [0.075,0.104]

Within School:

Naive (Not Imputed) 0.012 0.013 0.012 0.015 0.014 0.015 0.014 0.014 0.010

[0.012,0.013] [0.012,0.014] [0.010,0.015] [0.012,0.018] [0.013,0.016] [0.012,0.018] [0.011,0.018] [0.012,0.017] [0.009,0.012]

Naive (All Teachers) 0.012 0.013 0.014 0.015 0.016 0.018 0.019 0.016 0.015

[0.012,0.013] [0.012,0.014] [0.012,0.016] [0.013,0.019] [0.014,0.018] [0.015,0.022] [0.015,0.024] [0.013,0.019] [0.013,0.017]

Robust (All Teachers) 0.012 0.013 0.014 0.015 0.016 0.018 0.020 0.016 0.015

[0.012,0.013] [0.012,0.014] [0.012,0.016] [0.013,0.018] [0.014,0.018] [0.015,0.023] [0.016,0.024] [0.014,0.019] [0.013,0.018]

Note: This table shows the expected gains from three different assignments: a naive assignment ignoring

parameter uncertainty and only reallocating teachers who have taught each subgroup; a naive assignment

using imputed value added for teachers who have never taught certain subgroups; and a robust assignment

using imputed value-added scores (our main specification). Expected gains and confidence intervals are

computed using the 1,000 bootstrapped samples.
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Table A.5. Reading and Dollar Reassignment Results

Panel A. Reading

Reading Standard Reading Median Split Reading Terciles Reading Quartiles Reading Quintiles

Robust (All Teachers) 0.034 0.048 0.056 0.062 0.066

[0.032,0.035] [0.044,0.052] [0.049,0.066] [0.054,0.072] [0.056,0.076]

Gender Gender x Median Split Race Race x Median Split

Robust (All Teachers) 0.038 0.054 0.044 0.061

[0.034,0.045] [0.045,0.066] [0.038,0.054] [0.053,0.072]

Panel B. Dollars

Standard Median Split Terciles Quartiles Quintiles

Robust (All Teachers) 2032 2782 2898 2926 3135

[1946,2117] [2523,3109] [2648,3251] [2566,3336] [2741,3602]

Note: This table shows the gains analogous to Figure 3 (i.e., robust, outcome-maximizing reassignments

across schools in the district) for reading and dollar outcomes, instead of focusing on math as the outcome.

The first panel shows reading results split by prior achievement, the second shows reading results by demo-

graphics and interactions with prior achievement, and the last shows the results considering both reading

and math and their impact on long-term earnings, with the indicated splits by prior achievement in both

subjects using the gain estimates from Chetty et al. (2014b) of $1,524 for a one standard deviation increase

in reading and $650 for a one standard deviation increase in math then inflating those gains to nominal 2025

dollars and reporting lifetime earnings. All gains are expected gains computed using the 1,000 bootstrapped

samples. 95% confidence intervals are also reported from re-estimating value added, recomputing the optima,

and evaluating gains in 1,000 bootstrapped samples.
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B. Theory Appendix

B.1 Derivation of Equation 1

Let welfare be a weighted sum of lifetime utilities, WJ =
∑n

i=1 φiU
J
i , where the utilities UJi

may depend on the policy J , but the ex ante welfare weights φi do not. Let SJi = s(Y Ji ,Xi)

be a score function summarizing outcomes, Yi, and characteristics, Xi. Assume that an

individual’s outcomes affect only the utility and welfare weights of that individual i. Then

the expected welfare W under policy J , given Y and the scores SJ can be written as

E[WJ |SJ ] =
n∑
i=1

E[φiU
j
i |SJi ]

=
∑
j

∑
i:J (i)=j

E[φiU
j
i |SJi ]

=
∑
j

∑
i:J (i)=j

E[φiU
J
i |SJi ]

SJi
SJi

≡
∑
j

∑
i:J (i)=j

ωJi S
J
i

where the first equality follows from the no-spillovers assumption, the second follows from

the surjectivity of J (all students get taught), the third by multiplying and dividing by SJi ,

and the fourth by defining ωJi = φi
E[UJi |S

J
i ]

SJi
.

Furthermore, if s(·) is additively separable into a student- and a match-specific component

(µi + µi,j) with the score match effect for the status quo, µi,J0(i), normalized to zero, and

if it is an unbiased, strictly linear predictor of U , then the expected difference between any

assignment and the status quo can be written as

WJ ≡
∑
j

∑
i:J (i)=j

ωJi S
J
i −

∑
j

∑
i:J0(i)=j

ωJ0i S
J0
i

=
∑
j

∑
i:J (i)=j

[
ωi(µi + µi,j)− ωi(µi + µi,J0(i))

]
=
∑
j

∑
i:J (i)=j

ωiµi,j

where the first equality leverages the fact that s() is additively separable and that if s() is

unbiased and strictly linear, then E[U |S] = αS, so ∀J ωJi = φiα ≡ ωi. The second equality

follows from the normalization of the status quo match to zero.
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B.2 Derivation of Equation 2

Let expected welfare be WJ as defined in Equation 1, let µ̂j be an estimate of teacher j’s

value added, and let nj is the number of students in the class to which teacher j is assigned.

Consider the bias we would introduce by approximating welfare as ŴJV A =
∑

j njω̄jµ̂j

WJ − ŴJV A ≡
∑
j

∑
i:J (i)=j

ωiµi,j −
∑
j

njω̄jµ̂j

=
∑
j

nj


 1

nj

∑
i:J (i)=j

ωiµi,j

− ω̄jµ̂j


=
∑
j

nj

 1

nj

∑
i:J (i)=j

ωiµi,j + ω̄j

(
µ̃Jj − µ̃Jj + µ̄j − µ̄j − µ̂j

)

=
∑
j

nj

ω̄j (µ̃Jj − µ̄j)︸ ︷︷ ︸
Matching Gains

+ Ĉovj(ωi, µi,j)︸ ︷︷ ︸
Distributional Gains

+ ω̄j(µ̄j − µ̃0
j)︸ ︷︷ ︸

External Validity

+ ω̄j(µ̃
0
j − µ̂j)︸ ︷︷ ︸

Estimation Error


The first equality comes from factoring out nj. The second from adding and subtracting

µ̃j
J and µ̄j, where ω̄j and µ̃Jj represent the average welfare weights of students in teacher

j’s assigned class and the average match effect of teacher j on those students, and µ̄j is

their population average match effect (absolute advantage). The third comes from adding

and subtracting ω̄jµ̃
0
j , the average welfare weights times the true average match effect in the

class teacher j actually taught in the estimation sample, and from the definition of covariance

(we define the within-class covariance as Ĉovj(ωi, µi,j) ≡ 1
nj

∑
i:J (i)=j ωiµi,j − ω̄jµ̃

J
j ).

Expositional Note: For pedagogical clarity this equation is depicted as if welfare is

measured in levels, but recall that formally we defined the welfare of assignment J in differ-

ences from the status quo assignment, J0. As such, µ̃0
j has technically been normalized to

zero. Because all other µs have been similarly normalized, this doesn’t change the direction

or magnitude of bias, but we feel that including µ̃0
j in the equation is useful for building

intuition for the core trade-offs.
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C. Data and Estimation Details

C.1 Data Description

Our data from the San Diego Unified School District (SDUSD) are administrative, linked

data between students and teachers for the 1998–1999 through 2018–2019 school years. The

outcomes we use from the data include test scores, attendance, and behavioral GPA. The

data also include ethnicity and gender for both students and teachers, as well as information

on teachers’ credentials.

Test Scores. California had no statewide tests in the 2013–2014 school year because that

year it transitioned from one test administered in spring 2013 to a new test in spring 2015.

Throughout this time period, the district had three different testing regimes (summarized in

Table C.1). In the early years of our data, students in grades 2–6 took the Stanford Achieve-

ment Test, Ninth Edition (SAT9). During the 2001–2002 school year, students transitioned

to taking the California Standards Test (CST) each year in grades 2–6. This continued until

the 2012–2013 school year. Thereafter, the district shifted to the California Assessments of

Student Performance and Progress (CAASPP), administered as Smarter Balanced Summa-

tive Assessments to students in grades 3–8. For our purposes, we focus on students in grades

3–5.

Table C.1. Testing Regime by Grade and Year (With Tests in Spring)

1998–2001 2002–2013 2015–2019

Grade 2 SAT9 CST -

Grade 3 SAT9 CST CAASPP/Smarter Balanced

Grade 4 SAT9 CST CAASPP/Smarter Balanced

Grade 5 SAT9 CST CAASPP/Smarter Balanced

Non-Cognitive Outcomes. In addition to using these test score outcomes for reading

and math in each year (standardized yearly at the district level), we also include as outcomes

the fraction of the year that a student attended school and behavioral GPA, standardized

yearly at the district level.

The measurement of absences is straightforward, but the measurement of behavioral

GPA is more nuanced. We transformed teachers’ categorical ratings of various elements of

behavior into linear scales, averaged them, and then standardized them by grade and year.

There were two forms of the elementary school report card over time. Between the school

years ending in 2002 through 2007, the four variables we used included measures on a five-
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point scale for whether the student begins work promptly, follows directions, and measures

of self-discipline and overall classroom behavior. Thus, the first three variables focus on

a student’s attentiveness to classwork, while the fourth is more about overall emotional

behavior.

In 2008, some schools began a transition to a new standards-based report card that was

then used in all later years. We use three variables from this newer report card. Two are

similar to the first three variables above, in that they indicate how diligent and attentive the

student is to classwork. These variables are whether the student shows interest in learning

and completes assignments when due. The third new variable, whether the student respects

people and property, is similar to the overall classroom behavior variable in the older system.

Another difference is that in the new report card, instead of reporting on a five-point scale

teachers reported on a three-point scale. We handle this issue by standardizing so that the

overall behavioral GPA has a mean of zero and a standard deviation of one for each grade

and year.

As a check on the consistency of the behavioral GPA in 2008 relative to earlier years,

we calculated the correlation between behavioral GPA at the student level in year t and

t − 1 for t corresponding to spring 2003 through 2011, and checked for a large drop in the

autocorrelation in spring 2008, which marked the transition to the new report card format.

From spring 2003 through 2007, the correlation ranged from 0.632 to 0.664; in the key

transition year of 2008, the correlation was very close to this range, at 0.610. From 2009

through 2011, the range was 0.554 to 0.568, perhaps reflecting slightly greater noise due to

the use of three rather than four variables in the new index.

C.2 Sample Creation

We generate both an estimation sample and a policy counterfactual sample using the SDUSD

data. We start with a sample of 582,579 student-year observations in 3rd-5th grade class-

rooms from the 1998–1999 through 2018–2019 school years and make five restrictions in-

tended to target typical teachers in SDUSD teaching traditional 3rd-5th grade classes.

• We drop students who are absent from their assigned class more than 50 percent of

the time. This restriction is nominal, dropping less than 0.1% of students.

• We drop classrooms teaching only special education students. This drops 6,293 student-

year observations.

• We drop mixed-grade classrooms. Because SDUSD pushed to eliminate mixed-grade

classrooms in 2002, this is our biggest sample restriction in the early years, dropping
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70,052 student-year observations, 40% of which are prior to the 2002–2003 school year.

This restriction is important to guarantee consistency when reassigning teachers across

classes.

• We drop classes outside of the student-weighted 2.5th and 97.5th percentiles of class

size, limiting our sample to classes between 13 and 35 students. This drops an addi-

tional 31,710 student-year observations, all reflecting non-typical teaching situations.

Including these classes results in much larger gains by placing the best teachers in these

few enormous classes.

• We drop grade repeaters from our estimation and reassignment sample, since identi-

fying prior-year test scores to estimate teacher value added is fraught. This is a small

limitation, dropping 8,047 student-year observations across the 20 school years in our

sample.

These restrictions leave us with 466,150 student-year observations.

In the estimation sample, we include only students with at least two consecutive years of

data on at least one relevant outcome. This leaves us with 378,399 student-year observations

to estimate teacher value added for 2,306 unique teachers across 19 years. For the policy

counterfactual sample, we limit to the third-grade cohorts of 2002–2003 through 2010–2011.

This includes 73,235 students.

Table C.2 shows the composition of classes across grades in both the estimation and

policy counterfactual samples. There are a few main takeaways from this table. First, the

typical class (regardless of grade) is balanced on prior achievement in math and reading, prior

behavioral GPA and attendance, and gender. Just under 60 percent of students in the district

are Black or Hispanic, and this is reflected in the average racial/ethnic composition of classes

in our two samples. Second, differences across grades and samples in the composition of

classes along these dimensions are not meaningful, though classes in the policy counterfactual

sample perhaps have a slightly higher fraction (about 6 percentage points) of students with

worse prior behavior and attendance than those in the estimation sample. This amounts to

an average of roughly one more student below the median in these categories relative to the

estimation sample. Third, the dispersion of classes on these metrics can be seen clearly from

the 25th and 75th percentiles of each. The widest dispersion occurs in the math, reading, and

racial/ethnic composition of classes. This reflects the geographic sorting of students across

schools in the district and is one reasons why we observe the largest gains from reassigning

teachers using these dimensions.
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Table C.2. Summary Statistics by Grade and Sample

Estimation Sample Reallocation Sample

Grades 3rd 4th 5th 3rd 4th 5th

Below median Math 0.51 0.51 0.51 0.51 0.51 0.51

[0.31, 0.71] [0.32, 0.70] [0.32, 0.70] [0.32, 0.70] [0.33, 0.69] [0.34, 0.70]

Below median Reading 0.52 0.52 0.52 0.51 0.52 0.52

[0.30, 0.73] [0.32, 0.73] [0.32, 0.72] [0.31, 0.71] [0.33, 0.72] [0.33, 0.71]

Below median Behavior 0.48 0.48 0.49 0.51 0.51 0.56

[0.33, 0.60] [0.33, 0.60] [0.33, 0.62] [0.38, 0.65] [0.38, 0.63] [0.40, 0.71]

Below median Attendance 0.46 0.45 0.46 0.52 0.50 0.51

[0.37, 0.57] [0.38, 0.55] [0.38, 0.56] [0.41, 0.63] [0.42, 0.61] [0.42, 0.62]

Female 0.49 0.49 0.49 0.50 0.50 0.50

[0.43, 0.55] [0.44, 0.55] [0.44, 0.54] [0.43, 0.56] [0.44, 0.55] [0.44, 0.55]

Black/Hisp 0.59 0.61 0.60 0.60 0.62 0.62

[0.35, 0.86] [0.36, 0.87] [0.34, 0.86] [0.35, 0.88] [0.38, 0.89] [0.36, 0.88]

Note: Each row represents the average fraction of the given category across classes in the given sample. The

square brackets contain the 25th and 75th percentiles of the given variable.
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C.3 Value Added Estimation

C.3.1 Model and Identification

We model student achievement following Delgado (2025) and Bates et al. (2025), as a function

of observable student characteristics, teacher value added, teacher experience, school effects,

time effects, and classroom shocks specific to student subtypes, as follows:

Si,s,t = µJ (i,t),s,k,t + βs,kXi,t + φ`(i,t),s + φs,t + θC(i,t),s,k + εi,s,t

where Si,s,t is the score from student i for outcome s in year t, µJ (i,t),s,k,t is the value added

from the assigned teacher j for students of type k, Xi,t are the observed student charac-

teristics, φ`(i,t),s are all school-specific factors impacting student achievement on outcome s

from the student’s assigned school `(i, t), φs,t are outcome specific time effects, θC(i,t),s,k are

outcome-specific classroom shocks to students of type k for assigned classroom C(i, t), and

εi,s,t are idiosyncratic student-level shocks.

Because we are studying primary school teachers, students and teachers are typically

assigned to one and only one class each year. As in Delgado (2025), this means that we

cannot separately identify teacher value added from classroom shocks.

We make two standard assumptions to identify our value-added model following Delgado

(2025) and Bates et al. (2025).

Assumption 1. (Joint Stationarity) Assume that subgroup-specific teacher effects, class-

room shocks, and student-level shocks follow a stationary process.

E[µJ (i,t),s,k,t|s, k, t] = E[θC(i,t),s,k,t|s, k, t] = E[εi,s,t|s, k, t] = 0

Cov(µJ (i,t),s,k,t, µJ (i,t),s,m,t+h) = σµk,µm,h

Cov(θC(i,t),s,k,t, θC(i,t),s,m,t) = σθk,θm

Cov(εi,s,t, εi,s,t+h) = σεs,k,h

Cov(εi,s,t, εi,s′,t) = σεs,εs′

Assumption 2. (Fixed-Effect Independence) Let ᾱj,s,k be teacher j’s mean value added

for student type k and let `(j, t) return teacher j’s assigned school in year t. Assume that

teachers’ drift is independent of the school effects on each outcome.

(αj,s,k,t − ᾱj,s,k) ⊥ φ`(j,t),s∀k
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C.3.2 Estimation Details

Estimation follows Bates et al. (2025) and Delgado (2025), with adaptations for multidimen-

sionality. We follow the first three steps of the four-step estimation procedure in Bates et al.

(2025) exactly for each outcome domain, s.

First, we regress our outcome Si,s,t on a set of student characteristics, Xi,t and teacher-

subgroup-year fixed effects, αJ (i,t),s,k,t for each outcome and student subgroup:

Si,s,t = βs,kXi,t + αJ (i,t),s,k,t + vi,s,t

where i indexes students, s indexes outcomes, t indexes years, k indexes student subgroups,

and J (i, t) indexes the teacher assigned to student i in year t. In this regression, Xi,t includes

cubic polynomials in prior-year math, reading, attendance, and behavior, each interacted

with student grade level. We also include ethnicity, gender, age, lagged suspensions and

absences, and indicators for special education and English language learner status.50

Second, we form residuals from this initial regression, v̂i,s,t, by subtracting the effects of

student covariates (but not teacher fixed effects):

v̂i,s,t = Si,s,t − β̂s,kXi,t

and project these residuals separately for each outcome s onto teacher (αj,s), school (φ`(i,t),s),

and year fixed effects (φs,t), as well as a teacher experience function fs(z). We specify this

function to allow for different returns for each year of experience up to 6 years then one

estimate for all years of experience thereafter (i.e., 7+ years). We estimate this regression

separately for each outcome, allowing different estimates for each component for across

outcomes s.

v̂i,s,t =
6∑
e=1

δes1{zJ (i,t),t = e}+ δ7
s1{zJ (i,t),t > 7}+ αJ (i,t),s + φ`(i,t),s + φs,t + ηi,s,t

= fs(zJ (i,t),t) + αJ (i,t),s + φ`(i,t),s + φs,t + ηi,s,t

Third, we form a second set of student-level residuals in which we remove the school

50One small difference from Bates et al. (2025) is that they include student socioeconomic status, proxied
by free and reduced-price lunch—which is not provided to researchers by SDUSD.
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effects and teacher-experience effects:

Ai,s,k,t = v̂i,s,t −
(
f̂s(zJ (i,t),t) + φ̂`(i,t),s

)
= Si,s,t − β̂s,kXi,t − f̂s(zJ (i,t),t)− φ̂`(i,t),s

which we can aggregate into average residuals for each teacher-year-subgroup-outcome:

Āj,s,k,t =
1

nj,k,t

∑
i:J (i,t)=j,ki=k

Ai,s,k,t

Finally, we then stack average residuals from all outcomes and student-subgroups from

years prior to t into a single vector for each teacher, A−tj and estimate teacher j’s vector of

value added for each outcome s and student subgroup k in year t using only the prior data:

µj,t = ψ′jA
−t
j (C.1)

The matrix ψ′j is a teacher-specific set of reliability weights with dimensions M ×M(t− 1),

where M is the number of outcome-subgroup divisions.51. The reliability weights capture

the population relationship between average residuals in year t and prior years and are

adjusted for teacher-specific signal strength (reflected by the number of students taught in

each subgroup and intersection of subgroups).

Following the notation of Delgado (2025), for each m, ψj can be written as Γ−1
j γ. We

denote Γj = Γ − Dj + λI. The first component of Γj, Γ, captures the overall variance-

covariance structure across time, subgroups, and outcomes. This is a shared block variance-

covariance matrix of dimension (M(T − 1) × M(T − 1)), where each block reports the

t-autocorrelations of m and m′. The second component, Dj, is a teacher-specific matrix for

information adjustment based on sample size. This block matrix is composed of M ×M

diagonal blocks, where the T − 1 diagonal elements are
nm,m′,tσεm,m′

nm,tnm′,t
where nm,m′,t is the

intersection of students in both subgroup-outcome cells m and m′. For example, in the

diagonal blocks this corresponds to
σεk
nk

as in Bates et al. (2025) and Delgado (2025), but

in the presence of multidimensionality, it also adjusts for within-student correlations across

outcomes σεs,ε′s in the off-diagonal blocks. Intuitively, this adjustment makes Γj larger and

more spherical when we have noisier information about teacher j’s effects, shrinking ψj,m,t

toward zero. The third component, λI, is a ridge-type adjustment that keeps Γj positive

definite despite the Dj adjustment—which can be very noisy in high-dimensional cases. We

51Note that students need not be subdivided into the same number of subgroups for each outcome (e.g.,
one could estimate three subgroups for reading and two for math, meaning that M = 5)
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discuss details of the cross-validated selection, properties, and robustness of λ across models

in Appendix C.4. Finally, the γ matrix is an (M(T −1)×M) matrix of correlations between

average residuals for each subgroup and outcome in periods t− h and period t.

In addition to the regularization, the only other substantive deviation from the ap-

proaches of Delgado (2025) and Bates et al. (2025) is highlighted in Equation C.1. Whereas

those papers studied only one outcome at a time, we use information from all outcomes and

subgroups to predict each value-added estimate. As such, µj,t is a M × 1 vector capturing

the teacher’s impact on each student subgroup and outcome. Since we only observe one

teacher per class, we combine the structural estimation of σθk and σµk as in Delgado (2025)

rather than Bates et al. (2025), though both papers differ only slightly in their estimation

of the relevant structural parameters. We also impose a drift limit of seven (as in Bates

et al. (2025)), after which all elements of the autocorrelation vector are set to σµk,µm,8 for

any k,m. Our final estimate for teacher j’s value added in year t on outcome s for students

in subgroup k is as follows:

µ̂V Aj,s,k,t = ψ̂s,kA
−t
j + f̂s(zJ (i,t),t)

where ψ̂s,k are the relevant elements of ψ′j.

C.4 Regularization of Γj

When estimating additional value-added parameters on the same sample, Γj can become

ill-conditioned and generate low-quality estimates. This can occur with both multidimen-

sionality and heterogeneity, as each additional parameter requires estimating (T − 1) ×M

additional hyper-parameters. Although the population Γ is guaranteed to be positive defi-

nite, sampling noise can lead to small (or even negative) eigenvalues in Γ −Dj and a large

condition number. This causes large swings in the reliability weights and produces value-

added estimates that have literally no predictive power for the current-year test scores (β = 0

or 100% forecast bias). This occurs almost exclusively in the highest-dimensional models,

i.e., those with M > 6.

We address this issue using a ridge-type regularization. Rather than treating Γj = Γ−Dj

as in Delgado (2025), we add a small positive number, λ, to the diagonal elements of Γj

affected by Dj. This well-known solution to ill-conditioning (Tikhonov et al., 1995) works

because adding λ to the diagonals of Γj increases all eigenvalues by λ. This ensures that the

matrix is positive definite, reduces the condition number (by adding λ to both the numerator

and the denominator), and guarantees that Γj is well behaved when inverted. The resulting

reliability weights ψ̂j = (Γ − Dj + λI)−1γ share intuition with a ridge regression (Hoerl
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and Kennard, 1970), and similar corrections have been used in other empirical applications,

such as the estimation of price elasticities (Chernozhukov et al., 2019) and financial returns

(Martin and Nagel, 2022).

In practice, we choose a unique λ for each model by minimizing the forecast bias (1−β) for

the estimates (an approximate out-of-sample prediction52). We use a standard optimization

routine, initializing at λ = 0.005, calculating the implied estimates, estimating the forecast

bias, and updating λ by gradient descent. Since we are minimizing forecast bias—one minus

the forecast coefficient—there may be local minima with a forecast bias of one in instances

where Γj is very poorly conditioned (i.e., the model has so little predictive power that small

changes in λ do not help). By construction, the only other minimum is at a forecast bias of

zero (perfect forecasting), so we add a heuristic adjustment to λ of 0.2 when stuck in a local

minimum. Note that while this process seeks to minimize forecast bias, it is not guaranteed

to eliminate it. An oversaturated model may still function poorly even after regularization.

The fact that this approach produces accurate out-of-sample predictions for models with

even 6–12 subgroups is strong evidence of its usefulness in practice.

Figure C.1 shows the optimal λ values for each model. Most models include a very small

amount of regularization—55 percent of models have regularization smaller than 10 percent

of the on-diagonal variance for that model, and 75 percent are smaller than 15 percent.

Models with multiple outcomes typically require more regularization than models using only

heterogeneity. For example, the models labeled “Noncognitive and Cognitive” (which shrink

across math, reading, behavior, and attendance—with various degrees of heterogeneity) and

“High Dimensional Math and Reading” (which shrink across math and reading with three

or more degrees of heterogeneity in each) require all of the largest λ values.

One concern with this approach is the potential need to calculate a new optimal λ for

each set of bootstrapped estimates. We do this for a sample of bootstraps, and find that the

standard deviation in the optimal λ calculated using the bootstrapped samples is very small,

ranging from 0.0001–0.006 across models. These differences are inconsequential, causing

virtually no difference in the estimates (0.99+ correlation across estimates calculated with

different λ values). Although the estimates are very similar, we also test whether differences

in the value of λ matter in optimal assignments. The standard deviation of the gains from

assignments using the estimates generated with these different λ values is 0.088%–0.93% of

the predicted gain. We conclude that neither estimation nor reassignment is sensitive to the

re-optimization λ for a given model.

52Forecast bias is not precisely an out-of-sample prediction because data from all years are used to estimate
the hyper-parameters—including the year being forecast. However, given the large number of teachers, years,
and students, leakage is small.
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Figure C.1. Most Models Require Little Regularization
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Note: The dotted line in the figure gives the average value of the variance that we regularize along the

diagonal of Γj across all models. “Noncognitive and Cognitive” models are those where we shrink not only

across reading and math, but also across behavioral GPA and absences, with varying degrees of heterogeneity

in math and reading. “High Dimensional Math and Reading” models shrink across M ≥ 5 math and reading

subgroups.
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Ultimately, most of our models are forecast unbiased with or without regularization. This

breaks down for more complex models, where estimating the model without regularization

suffers from an ill-conditioned Γj, leading to large swings in value-added estimates and high

degrees of forecast bias. However, even these models are nearly all forecast unbiased with

regularization—specifically, they go from having no predictive power on current-year test

scores to showing nearly zero forecast bias once regularized. For the more parsimonious

models used for our primary results in the paper, the correlation between the regularized

estimates and the typical value-added estimates is 0.998. The correlation in forecast bias

between these two sets of models is also very high, 0.95. Even though this regularization

matters little for our primary results, we use it with every model for consistency.
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C.5 Validation and Robustness

To show the robustness of our teacher value-added estimates, we demonstrate in this section

that using an alternative estimation strategy to calculate the impact of teachers on students

still yields very similar answers to our preferred methodology. In particular, we estimate

teacher effectiveness following the strategy pioneered by Chetty et al. (2014a) by including

rich controls, with cubic polynomials in each of our four lagged outcomes interacted with

covariates (grade, ethnicity, gender, age, special education status, English learner status),

grade and year indicators, cubic polynomials of leave-one-out class and school-grade means

of prior-year outcomes interacted with grade, and leave-one-out class and school-year means

of all other individual covariates. This strategy also assumes independence of teacher value-

added measures across outcomes and student subgroups.

In Table C.3, we show the correlations of these estimates with our preferred estimates

for value added on math and reading achievement. In both reading and math, we show

the correlations between the two estimation strategies for two different student subgroups:

above- and below-median students in prior math and reading achievement. The correlations

between estimates for the same student subgroup and outcome are all high, ranging from

0.6 and 0.7. This suggests a strong relationship between our preferred estimates and those

obtained using this alternative specification.

Furthermore, correlations in Table C.3 between above- and below-median math students

are substantially higher for our preferred estimates (0.93) than for the alternative specifi-

cation (0.80). This is also true for reading value added: 0.94 for our preferred estimates

versus 0.67 for the alternative specification. The last row of the table shows that the amount

of across-teacher variation in value added is similar. Taken together, this implies that the

scope for gains from comparative advantage using these alternative estimates is larger than

from our preferred estimates, suggesting that our estimates provide a more conservative pic-

ture on the gains from reallocating teachers than would be obtained using these alternative

estimates.
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Table C.3. Full Correlations Between Our Preferred and Alternative Estimates

Math Math Reading Reading Math’ Math’ Reading’ Reading’

Below Above Below Above Below Above Below Above

Math Below - 0.94 0.67 0.67 0.70 0.64 0.53 0.51

Math Above 0.94 - 0.66 0.67 0.68 0.71 0.51 0.54

Reading Below 0.67 0.66 - 0.94 0.54 0.47 0.68 0.58

Reading Above 0.67 0.67 0.94 - 0.53 0.48 0.65 0.61

Math’ Below 0.70 0.68 0.54 0.53 - 0.80 0.70 0.60

Math’ Above 0.64 0.71 0.47 0.48 0.80 - 0.57 0.68

Reading’ Below 0.53 0.51 0.68 0.65 0.70 0.57 - 0.67

Reading’ Above 0.51 0.54 0.58 0.61 0.60 0.68 0.67 -

Standard Dev 0.18 0.20 0.13 0.12 0.19 0.22 0.12 0.14

Note: The standard deviations are reported in the last row, and each element of the matrix is the correlation

between the row and the column. Every row or column with a prime (’) gives the alternative estimates without

school fixed effects, whereas those without primes give our preferred estimates. “Below” and “Above” refer

to the students below and above the median.
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D. Assignment Policy Details

D.1 Optimal Assignment with Linear Programming

To assess the gains from alternative assignments, we first assign each student in the policy

counterfactual sample to a relevant subgroup. For students with observed lagged outcomes

and demographics, this is trivial. For other students, we impute their subgroups and then

hold them constant throughout all assignment counterfactuals. We do so in the following way.

First, when possible, we use the current-year score rather than the lagged score because it is

the closest proxy for lagged scores. Second, if the current-year score is also missing, we use

the student’s modal subgroup for the relevant outcome across all years in which we observe

the student. Third, we use the subgroup of a randomly drawn peer of the same gender, race,

school, year, and grade. Finally, in a very small number of cases, we use a random peer

from students in their school in that same year or, as a last resort, from students in their

school at any time and assign the student to a subgroup. This procedure ultimately classifies

all unassigned students and allows us to account for them properly when assigning teachers

across classes. Additionally, we include teachers in the reassignment exercise only if we have

estimates for their value added on the relevant subgroups and outcomes. We retain teachers

without value-added estimates in the same class they actually taught (effectively omitting

that class from the reassignment exercise). Ultimately, because we impute value added for

missing subgroups or outcomes using the Empirical Bayes predictions, this restriction makes

little empirical difference in our main specification, but it drives some of the differences

between rows in Appendix Table A.4.

We formulate the mixed-integer linear programming problem in the following way. We

first assign teachers and classes to reassignment “cells”, i.e., the set of classes that are

allowable assignments for those teachers. Each cell is effectively its own optimization problem

since we allow for no assignments across cells, so for the remainder of the section we will treat

the problem as if there were only one cell. For within-school swaps, these cells are school-

grade-year cells, and for across-school swaps they are grade-year cells. We then represent

each possible assignment as a binary variable in the optimization problem. For example, xj,c

takes the value of one if teacher j was assigned to class c and zero otherwise. In each case,

the status quo class to which teacher j is assigned to is class c = j.

Ultimately, this leaves us with (NC)2 assignment variables in each cell where Nc is the

number of classes or teachers in the cell. Let C : (i, t) → c be an assignment function

indicating which class a student is assigned to each year. Formulated in this way, the

objective function we maximize in the optimization problem as following:
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V̂C =
∑
c∈C

∑
j

xj,c

 ∑
i:C(i,t)=c

ωki,tµ̂j,ki,t,t


where C denotes the cell (fixing year, t, grade, and school where applicable), ωki,t is the

welfare weight assigned to students of type k = ki,t and µ̂j,ki,t,t is the estimated value added

of teacher j for students of type k = ki,t. Because each xj,c is an assignment indicator, this

function sums the welfare-weighted value added from each teacher assignment made, and

adds zero from assignments that are not made.

The linear constraints for the problem are as follows:∑
c

xj,c = 1, ∀j
∑
j

xj,c = 1, ∀c

meaning that each teacher must be assigned to one and only one class, and each class must

have one and only one teacher. We add one additional constraint when restricting the number

of swaps that can be made:

∑
c

∑
j

1{j 6= c}xj,c ≤ Nc × f

where f is the fraction of swaps we allow. Since this sums the binary assignment variables

where j 6= c—that is, those where the teacher is assigned to a different class than the

status quo—it represents the number of switches that are made. The solution to either the

constrained or unconstrained problem yields an optimal mapping of teachers to classes.

D.2 Aggregating Gains from Reassignment

This section describes how we aggregate gains across students for each assignment. Once we

solve for the optimal assignment of teachers to classes in each instance, we use the result-

ing mapping to assign each student a ‘new’ value-added score—that is, the heterogeneous

estimate from their newly assigned teacher for the student’s subgroup. The ‘gain’ for each

student in a given year is the newly assigned value-added score (i.e., what the student would

get if the alternative assignment were implemented) minus the original value-added score

(i.e., what they would have had in the status quo).53 This means that if we are unable to

53This, of course, can be negative if the newly assigned teacher is worse for the particular student or can
be zero if a student is assigned to the same teacher in the alternative assignment that they would have been
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reallocate a teacher in a particular year, her students are all given a gain of zero since gains

are relative—comparing the assignment with the status quo—and those students keep the

same teacher in both.

Our policy counterfactual sample allows us to report the average expected three-year

gain for a student who experienced the policy for three years. We do this first by summing

the total gains for students within each grade level and subgroup and then dividing by the

number of relevant student-years to obtain the average gains to students in each grade and

subgroup.54 We then sum these grade-specific averages into the total expected three-year

gain for students of each type.

D.3 Comparing Models and Identifying the Second Best

This appendix presents details of the model selection criteria proposed in the body of the

paper and their results for assignments targeting math scores and lifetime earnings.

For many of these criteria, the following definitions will be helpful.

Definition 1. (Predicted Gains) Denoting estimate b (typically from B bootstrapped

replications) of model m as µ̂mb , the predicted gains from policy J are then

θ̂mbJ =
1

N

∑
j

∑
i: J (i)=j

µ̂mbi,j

Furthermore, denoting the assignment chosen by the social planner based on the original

value-added estimates, m0, as J ∗m, the predicted gains from an optimal assignment are θ̂m0
J ∗m ,

and the bootstrapped evaluations of this assignment are contained in the set {θ̂mJ ∗m}.

Definition 2. (Oracle Gains) For any model m, take the set of estimates, b, as a true

oracle of the effects. The set of oracle gains is {θ̂mJ bm}, where J b
m is the optimal assignment

under the oracle.

D.3.1 Mean Squared Error

One intuitive criterion for trading off matching gains and misallocation risk is the mean

squared error. A model with greater matching gains will have less bias relative to the first-

best optimum, and models with less misallocation risk will have lower variance. We adapt

the MSE criterion to this setting as follows:

assigned to in the status quo.
54We divide by student year counts to account for students who leave or enter the data between 3rd and

5th grade—just as a real policy maker would have to.
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Definition 3. (Adapted MSE) Following Definition 1, the true gains from any policy are

θJ = 1
N

∑
j

∑
i: J (i)=j µi,j and the gains from the first-best assignment are θ∗ = maxJ θJ .

The mean squared error of model m relative to the first-best assignment is then

MSE(θ̂m) = E
[(
θ̂mJ bm − θ

∗
)2
]

= V(θ̂mJ bm) +
(
E[θ̂mJ bm ]− θ∗

)2

Unfortunately, defining the MSE alone is insufficient to compare models and assignments

because the gains from the first-best assignment are unknown. To overcome this limitation,

we draw plausible values for θ∗ and calculate the expected MSE for each model m:

MSE(θ̂m) =

∫
θ′
V(θ̂mJ bm) +

(
E[θ̂mJ bm ]− θ′

)2

dθ′

In practice, we estimate MSE(θ̂m) using the sample analogues Ê[θmJ bm
] = 1

B

∑
b θ̂

mb
J bm

and

V̂(θmJ bm
) = 1

B−1

∑
b

(
Ê[θmbJ bm

]− θ̂mbJ bm
)2

. We also draw θ′ uniformly from [0.05, 0.25] for math and

[1000, 7000] for earnings (which each cover about one third of a teacher standard deviation of

gains). The average MSE across models is shown in Figure D.1. In Panel (a), when focusing

on math scores, the model allowing for heterogeneity across four subgroups performs best,

even when compared with models that also use demographics. In Panel (b), the earnings

model that performs best is that allowing for different value added above and below median

in both math and reading scores.

D.3.2 Misallocation Risk as Oracle Regret

Definition 4. (Oracle Regret) We characterize the distribution of regret under each

model as the foregone gains in assignment J ∗m relative to the oracle optima J b
m. For each

oracle, the oracle regret is defined as

Regret(mb) = θ̂mbJ bm
− θ̂mbJ ∗m

A maximization problem that trades off matching gains and misallocation risk can be

derived from regret if the social planner chooses a model to maximize expected outcomes

subject to an arbitrary constraint on regret, R:

max
m
L(m) = max

m
E[θ̂mJ ∗m ]− κE[Regret(mb)−R]

72



Figure D.1. MSE across Models with Differing Complexity
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(a) MSE across Math Models
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(b) MSE across Earnings Models

Note: Each point in the figure represents the average MSE across different values of the true parameter. This

true parameter is drawn uniformly from [0.05, 0.25] for Panel (a) and from [1000, 7000] for Panel (b). The

dots labeled ‘Math’ in Panel (a) correspond to models including only math scores with differing numbers of

subgroups. Those labeled “Gender” include male versus female value added in the two subgroup case and

male/female value added by above- and below-median math achievement in the four-subgroup case. Those

labeled “Race” include Black and Hispanic/Non-Black and Non-Hispanic value added in the two subgroup

case and Black and Hispanic versus Non-Black and Non-Hispanic value added by above- and below-median

math achievement in the four-subgroup case. Each earnings model in Panel (b) includes estimates of the

specified number of subgroups for both math and reading, used jointly.

where κ is the shadow value of relaxing the regret constraint. Although the shadow price κ

is unknown, we can characterize the optimal model under any given value of κ.

In the data, expected gains to both math scores and lifetime earnings are concave in model

complexity, whereas regret is convex. Appendix Figure D.2 uses this objective function to

construct an empirical analogue of Panel (b) from Figure 1, assuming κ = 1. We choose

κ = 1 because expected gains and regret are already in the same units; however, the results

are similar for math and identical for earnings as long as κ ∈ (0.6, 1.5). Panels (a) and

(b) depict the marginal increase in expected gains from added model complexity against

the marginal increase in misallocation risk measured by regret. Panels (c) and (d) plot the

objective function for all models over the distribution of model complexity. This approach

indicates that the best model for math uses achievement quartiles and that the best model

for lifetime earnings uses above- and below-median for both math and reading.

D.3.3 Statistical Heuristics

Because the expected gains tend to be concave in model complexity whereas measures of

variability continue to increase, a simple criterion for model choice is to select the simplest
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Figure D.2. Model Selection with Oracle Regret
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(a) Marginal Welfare (Math)

0

500

1000

1500

2000

2500

3000

M
ar

gi
na

l W
el

fa
re

 C
ha

ng
es

 

1 2 3 4 5 6 7 8 9 10
Number of Subgroups

Marginal Gains
Marginal Regret

(b) Marginal Welfare (Money)
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(c) Constrained Welfare (Math)
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(d) Constrained Welfare (Money)

model from the equivalence class of models with the highest expected gains.

In practice, we identify equivalence classes by testing the one-sided null hypothesis that

the richest model m in the set has lower gains than each simpler model m′, and then grouping

estimates that are not distinguishable at a given level of significance. Then we select the sim-

plest model in that equivalence set. For example, if for a given level of statistical significance

the gains from making assignments using models with 4–9 subgroups were all statistically

indistinguishable from the gains from making assignments using 10 subgroups (the richest

model we estimate), we would choose the 4-subgroup model since it is the simplest. This

process results in achievement quartiles under [p ≤ 0.01] and achievement quintiles under

[p ≤ 0.05].
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D.3.4 Hyper-Parameter Validation

We also use model hyper-parameters to assess model quality. The stability and monotonicity

of the estimated hyper-parameters from our Empirical Bayes estimation provides another

basis for comparison between models. These hyper-parameters include the correlations and

intertemporal (auto)-correlations of class-subgroup residuals. Heuristically, we expect these

correlations to be higher for more similar groups and time periods. For example, teacher

effects on the ninth and tenth deciles should be more highly correlated than those on the

ninth and second deciles. However, because increasing the number of effects to estimate

from k to k + 1 introduces an additional (k + 1) × (T − 1) hyper-parameters from the same

data, the risks of misestimation increase as we split the sample more finely.55

Figure D.3 plots three examples from math heterogeneity by achievement, illustrating

intuitive patterns that break down as models become too complex. Panel (a) shows the

contemporaneous correlations between subgroup residuals over the distance between quan-

tiles.56 The cross-group correlations estimated in this model are monotonic in the distance

between quartiles and appear stationary (e.g., the correlation between 1 and 3 and 2 and 4

are similar), with adjacent quartiles being correlated at over 0.9 and the furthest quartiles

correlated at just over 0.35. Increasing model complexity complicates these patterns. In

Panel (b) of Figure D.3, we observe the cross-group correlations across septiles of prior math

achievement. While typically monotonic in the distance between quantiles, these parameters

are much less consistent and appear less stationary. These problems explode in the case with

10 subgroups (Panel (c)). The correlation structure varies wildly and is not monotonic (e.g.,

subgroups 8 and 3 are correlated at 0.35, 8 and 4 at 0.05, 8 and 5 at 0.85, and 8 and 6 at 0.25).

It seems unlikely that these patterns reflect the true data-generating process, indicating that

models with the highest degrees of heterogeneity are substantially less reliable.

55Because hyper-parameters are identified by teachers who teach students from both subgroups at time
t, small sample size bites twice—once through noisier average subgroup residuals, and again through fewer
teachers teaching both types of students at time t.

56For example, for the Q1 line, +1 denotes quartile 2 and +3 denotes quartile 4.
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Figure D.3. Hyper-Parameter Stability Decreases with Model Complexity
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(a) Quartiles

0.00

0.20

0.40

0.60

0.80

1.00

C
ro

ss
-G

ro
up

 C
or

re
la

ti
on

-10 -5 0 5 10
Distance Between Quantiles

Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7

(b) Septiles
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